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a b s t r a c t

Rheumatoid arthritis (RA) is associated with pathological bone destruction mediated by osteoclasts.
Although RANKL has been reported as a crucial factor for osteoclastogenesis, several other factors
increased in RA support osteoclast formation and resorption in the absence of RANKL such as TNF-alpha
and LIGHT. To date, in vitro bone resorption experiments are reported as the mean area of bone resorption
per cortical or dentine slices and do not provide any information about depth and volume of resorption.
The aims of this study were to assess these parameters by light microscopy and vertical scanning profil-
ometry (VSP). Peripheral blood mononuclear cells were used as a source of osteoclast precursors and
were cultured for up to 21 days in the presence of RANKL, TNF-alpha/IL-1 or LIGHT. Mean area, depth
and volume of resorption were assessed by light microscopy and vertical scanning profilometry. As
expected, RANKL induced large resorption pits (10,876 ± 2190 lm2) whereas TNF-alpha/IL-1 and LIGHT
generated smaller pits (respectively 1328 ± 210 and 1267 ± 173 lm2) with no noticeable differences
between these two cytokines. Depth and volume of resorption measured by VSP showed that RANKL pro-
moted deep resorption pits resulting in large volume of resorption. Interestingly, although mean area of
resorption was similar between TNF-alpha/IL-1 and LIGHT, the depth and volume of resorption of these
lacunae were significantly increased by 2-fold with TNF-alpha/IL-1. These results provide evidence that
although LIGHT appeared elevated in the synovial fluid of RA patients, its role in bone resorption is less
than TNF-alpha/IL-1 or RANKL.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Osteoclasts are multinucleated cells, tartrate resistant acid
phosphatase positive originating from the hematopoietic lineage
(CFU-GM) and capable of resorbing bone by digging eroded lacunae
[1,2]. Several factors have been implicated in osteoclastogenesis.
Among them, the triade composed of receptor activator of nuclear
factor jB ligand – RANKL, receptor activator of nuclear factor jB
– RANK and osteoprotegerin – OPG appeared crucial for osteoclast
development [3–6]. RANKL is a member of the tumour necrosis
factor (TNF) superfamily that is expressed on osteoblasts, stromal
and T-cells and interacts with its receptor, RANK, expressed at the
surface of osteoclast precursors [5,7–9]. The interaction between
RANK and RANKL results in the fusion of osteoclast precursors
and the activation and survival of mature osteoclasts. OPG acts as
a decoy receptor for RANKL and blocks RANKL-mediated osteoclast
differentiation and stimulation of osteoclast resorbing activity

[10,11]. Involvement of the RANKL/RANK pathway has been re-
cently reported in bone disorders characterised by increased bone
resorption such as post-menopausal osteoporosis [12,13], rheuma-
toid arthritis (RA) [14,15] and bone metastases [16,17].

In the last decade, evidences have emerged that other members
of the TNF superfamily were also capable of supporting osteoclast
formation and resorption. TNF-alpha and LIGHT (homologous to
lymphotoxins exhibiting inducible expression and competing with
herpes simplex virus glycoprotein D for herpes-virus entry media-
tor [HVEM], a receptor expressed by T lymphocytes) have been
reported to promote osteoclast formation independently of RANKL.
However, although it is thought that LIGHT-generated osteoclasts
are capable of bone resorption [18], TNF-alpha-generated osteo-
clasts require additional factors such as IL-1 beta to resorb bone
[18,19]. Nevertheless, activation of these newly-formed osteoclasts
does not require RANKL. As these two mediators are increased in
the synovial fluid of RA patients [20,21], it is believed that they
participate to the bone destruction associated with RA.

To date, in vitro bone resorption experiments involve the
culture of fully differentiated osteoclasts or osteoclast precursors
onto bovine cortical, dentine slices or calcified materials. Bone
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resorption is as such often reported as the mean area of bone
resorption per slice, i.e. the projection of a tri-dimensional network
of resorption lacunae into a two-dimensional plane. Although this
parameter is important to understand the effect of different medi-
ators on the extent of osteoclast activity, it neither provides any
information neither on the depth nor the volume of bone resorp-
tion. The recent development of surface microscopies such as ver-
tical scanning profilometry (VSP) may help to overcome this issue.
We previously reported that this technique is of greater impor-
tance to ascertain accurately the depth and volume of resorption
pits [22].

The aims of this study were to assess by light microscopy and
VSP, the mean area, depth and volume of resorption per resorption
lacuna created by osteoclast generated by RANKL, TNF-alpha/IL-1
and LIGHT. Our results indicated that RANKL was the most potent
agents to induce large and deep lacunae. On the other hand,
although TNF-alpha/IL-1 beta and LIGHT exhibited the same area
of resorption per lacuna, the depth and volume of resorption were
dramatically different.

2. Material and methods

2.1. Reagents

Recombinant human macrophage-colony stimulating factor
(M-CSF), recombinant human TNF-alpha, recombinant human IL-
1 beta and recombinant human LIGHT were purchased from R&D
Systems Europe (Abingdon, UK). Recombinant human soluble
RANKL was purchased from PeproTech Ltd. (London, UK). Cyto-
kines were aliquoted the day of purchased and store at�80 �C until
use. All other chemicals used in this study were purchased from
Sigma–Aldrich (Poole, UK).

2.2. Osteoclast generation

Peripheral blood mononuclear cells (PBMCs) were isolated from
the buffy coat of five healthy volunteers (Etablissement Français du
Sang, Angers, France), as described previously [23]. Briefly, blood
was diluted 1:1 in a-minimal essential medium (MEM) (Invitro-
gen, Paisley, UK), layered over Histopaque (Sigma–Aldrich Chemi-
cals, Poole, UK), and centrifuged (693g) for 20 min. The interface
layer was removed and resuspended in MEM supplemented with
10% heat-inactivated foetal calf serum (FCS, Invitrogen, Paisley,
UK). A fraction of the cell suspension was counted in a hemocy-
tometer following lysis of red blood cells by a 5% (v/v) acetic acid
solution. In order to induce osteoclast formation and activation,
human PBMCs were cultured on plastic and dentine slices as de-
scribed previously [24]. All cultures were maintained for up to
21 days in the presence of 25 ng/ml recombinant human M-CSF.
Recombinant human soluble RANKL (100 ng/ml, added day 7), re-
combinant human TNF-alpha (20 ng/ml, added day 7) and IL-1 beta
(10 ng/ml, added day 18) or recombinant human LIGHT (50 ng/ml
added day 7) were added in the cultures. Osteoclast formation was
evidenced on plastic by tartrate resistant acid phosphatase staining
at day 14 and the size and number of nuclei per osteoclast were
determined as previously described [23].

2.3. Assessment of the mean area of bone resorption by optical
microscopy

After 21 days in culture, the dentine slices were placed in NH4OH
(1 N) for 30 min and sonicated for 5 min to remove any adherent
cells. After rinsing in distiled water, the dentine slices were stained
with 0.5% (v/v) toluidine blue prior to examination by light micros-
copy. The surface of each dentine slice was examined for evidence of

lacunar resorption by mature osteoclasts. Digital photographs of the
dentine surface were taken at a magnification 4�with an Olympus
DP70 digital camera linked to an Olympus BX40 microscope (Olym-
pus, Rungis, France). A lacuna was defined as a zone of dark pixels
surrounded by white pixels. The area of resorption per lacuna was
measured by image analysis using ImageJ freeware. At least 30
resorption lacunae randomly chosen per dentine disks were mea-
sured. Experiments were done in triplicate and repeated three times.

2.4. Vertical scanning profilometry

After assessment of the mean area of bone resorption per lacu-
na, dentine slices were observed by VSP on a Wyko NT9100 inter-
ference profilometre (Veeco Instruments, Bruker, Palaiseau,
France) and the whole surface of each dentine disk was scanned.
This microscope is based on light interferometry and operates as
a non-contact optical profilometre in vertical scanning interferom-
etry mode (VSI) to produce 3D surfaces topography maps of the
sample surface. A white light beam is split into two beams which
pass through a Mirau’s interferometric objective. It consists of a
lens, a reference mirror and a beam splitter. The incident beam is
reflected from the mirror and combines with light reflected from
the sample to produce interference fringes where the best-contrast
fringe occurs at best focus. The light and dark fringes are used in
combination with the wavelength of the light to determine height
difference between each fringe. A piezo-electric stage moves the
sample vertically with a nanometre precision, which produces
phase shifts in the interferograms. They are digitized by a CCD
camera and data are analysed to produce a topographic surface
map. The software Vision™ (release 4.10, Wyko) was use to acquire
and analyse the data. In this study, the entire dentine slices surface
was measured at a magnification of 200 using an x y motorised
stage. As the slices were not perfectly plane during acquisition,
the tilt was automatically compensated by a facility of the Vision™
software. It minimises the angle of the sample relative to the refer-
ence optics so that slanted samples appear flat. For each lacuna, the
depth of resorption was measured on the profile of 3D models by
determining the edge and the bottom of each lacuna (Fig. 1). The
volume of resorption per lacuna was also determined. At least 30
lacunae randomly chosen per condition were measured.
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Fig. 1. Measurement of the depth of resorption lacuna. From the 2D image, it is
possible to superimpose a lane (dashed black lane AD) and determine the height
profile. The edge of the resorption lacuna (B) and the deeper point (C) can be
defined and the difference (Z) in height between these two points calculated. Z
represents the depth of the resorption lacuna.
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2.5. Statistical analysis

Statistical analysis was performed with the Systat� statistical
software release 11.0 (Systat Inc., San José, CA). Results were ex-
pressed as mean ± standard deviation. The non-parametric Krusk-
all–Wallis test was used to compare the differences between the
groups. When significant differences were observed, data were
subjected to Mann–Whitney U test. Differences at p < 0.05 were
considered significant.

3. Results

3.1. Size and number of nuclei per osteoclast

As presented Fig. 2A, osteoclasts were bigger when generated in
the presence of RANKL compared with TNF-alpha or LIGHT. On the
other hand, osteoclasts generated in TNF-alpha and LIGHT-treated
cultures appeared similar. As osteoclasts are not perfect geometri-
cal circles, it is not possible to measure precisely the diameter of
these cells. As such, the size was determined by assessing the
osteoclast area (Oc.Ar) (Fig. 2B). Oc.Ar was significantly increased
in RANKL-treated cultures by 3.6-fold and 3.9-fold compared with
TNF-alpha- and LIGHT-treated cultures, respectively. However, no
significant differences in Oc.Ar were evidenced between TNF-al-
pha- and LIGHT-generated osteoclasts.

The number of nuclei per osteoclast, which is an indicator of
how many osteoclast precursors fused together, was significantly
increased after treatment with RANKL compared with TNF-alpha
and LIGHT (Fig. 2C). On the other hand, no differences in this
parameter were observed between TNF-alpha and LIGHT.

3.2. Assessment of area, depth and volume of resorption lacunae

Fig. 3A represents the surface of dentine disks after RANKL-,
TNF-alpha/IL-1- or LIGHT-stimulated osteoclast cultures. The

extent of lacunar resorption was increased in RANKL-treated cul-
tures compared with TNF-alpha/IL-1- or LIGHT-treated cultures
and the lacuna size seemed also increased in the presence of
RANKL compared with TNF-alpha/IL-1 and LIGHT. Indeed, the lacu-
na area was significantly increased by 8.2-fold (10,876 ± 2190 lm2

vs. 1328 ± 210 lm2) and 8.4-fold (10,876 ± 2190 lm2 vs.
1267 ± 173 lm2) in RANKL-treated cultures compared to TNF-al-
pha/IL-1- and LIGHT-treated cultures, respectively (Fig. 3B). On
the other hand, the lacuna areas induced by TNF-alpha/IL-1 and
LIGHT were similar (Fig. 3B).

Interestingly, the depth and volume of resorption per lacuna
seemed increased in RANKL-treated cultures compared to TNF-al-
pha/IL-1 and LIGHT-treated cultures (Fig. 4). Furthermore, it also ap-
peared that the depth and volume of bone resorption per lacuna
were increased in TNF-alpha/IL-1-treated cultures compared to
LIGHT-treated cultures (Fig. 4). Indeed, the depth of resorption per
lacuna was significantly increased by 1.5-fold (29.7 ± 4.3 lm vs.
19.5 ± 3.9 lm) and 3.4-fold (29.7 ± 4.3 lm vs. 8.8 ± 1.3 lm) in
RANKL-treated cultures compared with TNF-alpha/IL-1 and LIGHT,
respectively (Fig. 5A). Furthermore, the depth of resorption per lacu-
na was also significantly increased in the TNF-alpha/IL-1 group by
2.2-fold compared to LIGHT. As a result of this increase in the depth
of resorption, the volume of resorption per lacuna was also
significantly increased by 8.9-fold (57,313 ± 15,600 lm3 vs.
6474 ± 1150 lm3) and 19.1-fold (57,313 ± 15,600 lm3 vs. 2996 ±
467 lm3) in RANKL-treated cultures compared to TNF-alpha/IL-1
and LIGHT, respectively (Fig. 5B). Moreover, the volume of resorp-
tion per lacuna was also significantly increased in TNF-alpha/IL-1-
treated cultures compared to LIGHT-treated cultures by 2.2-fold
(Fig. 5B).

4. Discussion

Bone resorption is a crucial process associated with the devel-
opment of bone disorders such as post-menopausal osteoporosis.
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Fig. 2. Example of osteoclasts generated in the presence of RANKL, TNF-alpha/IL-1 or LIGHT (A). Osteoclast area (Oc.Ar) (B) and number of nuclei per osteoclast (C) in RANKL-,
TNF-alpha/IL-1- and LIGHT-treated cultures. Bars represent 50 lm. ⁄⁄p < 0.05 vs. RANKL-treated cultures.
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Osteoporosis is characterised by a progressive destruction of the
trabecular microarchitecture resulting in increased trabecular
perforations and loss of connectivity leading to reduced bone
strength. Bone resorption also occurs in inflammation and similar
destructions of the trabecular network have been reported in
inflammatory bone disease. Increased osteoclastogenesis is also

observed in malignant haematological diseases such as myeloma
and B-cell lymphomas [25,26]. Interestingly, we have reported that
mononucleated osteoclasts are observed in B-cell malignancies but
not in myeloma [27]. In the present study, we evaluated the area,
the depth and the volume of resorption per lacuna created by
osteoclasts induced by different cytokines. It appeared clear that
RANKL, a key factor for osteoclastogenesis, is the most potent fac-
tor to induce large and deep bone resorption lacunae. This could be
in part attributed to the fact that osteoclasts generated with this
cytokine are bigger. Furthermore, osteoclasts generated with
RANKL often induce lacunae that superimpose slightly and create
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Fig. 3. Photographs of the surface of dentine disks after cultures with RANKL, TNF-alpha/IL-1 or LIGHT (A) and area resorption per lacuna (B). Bars represent 500 lm.
⁄⁄p < 0.05 vs. RANKL-treated cultures.

Fig. 4. 3D models of the surface of dentine disks after cultures with RANKL, TNF-
alpha/IL-1 or LIGHT.
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a ‘‘resorption trench’’, contributing to increase the area of
resorption.

The involvement of TNF-alpha and IL-6 in rheumatoid arthritis
has been suspected for years and led to the development of anti-
TNF and anti-IL-6 biotherapies. However, as not all RA patients re-
spond to anti-TNF therapies [28–30], other pathways have been
proposed [31,32]. Among them, LIGHT had been suggested as a
possible candidate as its levels are significantly increased in RA
[18,33–36]. From the present study, it appears that the area of
resorption per lacuna under TNF-alpha/IL-1 treatment is reduced
dramatically compared to RANKL. This could be explained by the
fact that the size of osteoclasts generated in the presence of TNF-
alpha is significantly reduced compared with RANKL. On the other
hand, no difference in term of area resorption per lacuna was evi-
denced between TNF-alpha/IL-1- and LIGHT- generated osteo-
clasts. However, the volume of resorption per lacuna was
dramatically reduced in LIGHT-treated cultures compared to
TNF-alpha/IL-1. This was explained by the reduction in the depth
of resorption. TNF-alpha/IL-1 was capable of inducing deep resorp-
tion whilst LIGHT was only capable of inducing a reduced eroded
surface of only few micrometres. However, further investigations
of the molecular mechanisms responsible for the differential
response of osteoclasts between TNF-alpha/IL-1 and LIGHT are
needed to elucidate why the eroded volume is smaller in LIGHT-
treated cultures and hence what is the physiological role of LIGHT
in pathological bone destruction. This reduction in the volume of
eroded surfaces resembles the abnormalities observed in resorp-
tion in haematological disorders: in myeloma, normal sized osteo-
clasts are known to be generated by the RANK–RANKL system [37]
and they provoke deep eroded surfaces in vivo with cortical perfo-
rations. On the other hand, other B-cell malignancies such as Wald-
enström disease or chronic lymphoid leukaemia induce smaller
osteoclasts associated with minute erosion lacunae [38,39]. How-
ever, the cytokine network in these diseases is poorly known.

In the present study, we have also evidenced that classical 2D
technique for assessing bone resorption and VSP are complemen-
tary. VSP is a useful tool to assess the depth and volume of bone
resorption, parameters which cannot be investigated with classical
2D measurements. The assessment of only the mean eroded area
by classical 2D measurement could lead to a false view of the pat-
tern of bone resorption, the LIGHT/TNF-alpha/IL-1 story reported in
this study being an example.

Our data suggest that the area, depth and volume of resorption
per lacuna were significantly increased in RANKL-treated cultures
compared with TNF-alpha/IL-1 and LIGHT-treated cultures.
Although the resorption lacunae, generated in TNF-alpha/IL-1 and
LIGHT-treated cultures, presented a similar surface area, the depth
and volume of resorption were considerably greater in TNF-alpha/
IL-1-treated cultures.
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