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Abstract

Oxidative stress results in deleterious cell function in pathologies associated with inflammation. Here, we investigated the
generation of superoxide anion as well as the anti-oxidant defense systems related to the isoforms of superoxide
dismutases (SOD) in cystic fibrosis (CF) cells. Pro-apoptotic agents induced apoptosis in CF but not in control cells that was
reduced by treatment with SOD mimetic. These effects were associated with increased superoxide anion production,
sensitive to the inhibition of IkB-a phosphorylation, in pancreatic but not tracheal CF cells, and reduced upon inhibition of
either mitochondrial complex I or NADPH oxidase. CF cells exhibited reduced expression, but not activity, of both Mn-SOD
and Cu/Zn-SOD when compared to control cells. Although, expression of EC-SOD was similar in normal and CF cells, its
activity was reduced in CF cells. We provide evidence that high levels of oxidative stress are associated with increased
apoptosis in CFTR-mutated cells, the sources being different depending on the cell type. These observations underscore a
reduced anti-oxidant defense mechanism, at least in part, via diminished EC-SOD activity and regulation of Cu/Zn-SOD and
Mn-SOD expressions. These data point to new therapeutic possibilities in targeting anti-oxidant pathways to reduce
oxidative stress and apoptosis in CF cells.
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Introduction

Cystic fibrosis (CF) is the most prevalent inherited and lethal

disease in the caucasian population. It is due to mutations in the

gene encoding the cystic fibrosis transmembrane conductance

regulator (CFTR) protein. Expressed in the majority of epithelial

cells [1], CFTR, an ATP-dependent membrane glycoprotein,

acts as a cAMP-regulated chloride channel [2], and as GSH

transporter, the major anti-oxidant of the cell [3], suggesting that

CFTR might regulate cellular redox status. More than 1,800

mutations have been identified resulting in a defective CFTR

protein [4]. The largely prevalent mutation [i.e., the deletion of

residue Phe-508 (DF508)] leads to a partial functional trafficking

mutant that is capable of conducting chloride, but is prematurely

degraded from the endoplasmic reticulum [5].

Absence of functional channel CFTR at the plasma membrane

does not permit water flux, leading to dehydrated secretion in all

tracts, notably airway and pancreatic tracts [6–8], and impaired

secretion clearance. Obstruction of tracts results in epithelial

destruction and favors the proliferation of bacteria in airways. CF

is characterized by chronic inflammation even in absence of

pathogens, and by the recruitment of activated neutrophils. The

origin of pro-inflammatory mediator production remains obscure

and appears to be the consequence of hyperactivation of NF-kB

transcription factor and the CFTRDF508 retention into endo-

plasmic reticulum (for review see [9]).

Under pathophysiological conditions, activated neutrophils and

epithelial cells release highly reactive molecules towards the

extracellular space, like reactive oxygen species (ROS) and reactive

nitrogen species in order to attack and eliminate invasive

pathogens [10,11]. However, in CF, several evidences show that

the defense systems are ineffective. Indeed, mitochondrial levels of

ROS are enhanced in CFTR2/2 lung epithelial cell line [12]

suggesting that, in CF, an increased production of ROS may be

associated with cell dysfunction and the incidence of disease.

Conversely, in CF airways, levels of nitric oxide (NO) have been

described to be low [13] and are associated with a reduction of

inducible NO synthase activity [14,15] that could favor bacterial

infection [16].

In addition to excessive oxidative and nitrosative stresses,

defective neutralization of ROS can also exacerbate noxious

functions in CF. Superoxide anion (O2
2) is dismutated into

oxygen and hydrogen peroxide by superoxide dismutase (SOD),

an endogenous cellular defense system, which decreases O2
2 levels

that damage cells at excessive concentration [17]. Extracellular-

SOD (EC-SOD, SOD 3), Mn-SOD (SOD 2) and Cu/Zn-SOD

(SOD 1) have been described as potent inhibitors of inflammation

[18,19]. Although no direct evidence has shown the involvement

of deregulation of SODs in CF, the fact that EC-SOD is highly

expressed in airways and up-regulated in animal models of lung

injury [20], it raises the possibility that SODs, and EC-SOD in

particular, may play a role in CF. We have previously reported
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that CF cells displayed an exacerbated apoptosis and NF-kB

activation, both contributing to the self-perpetuating inflammatory

cycle [21]. In the present study, we investigated the involvement of

oxidative stresses in the apoptotic response of CF pancreatic and

tracheal cells. For this, we used two pancreatic and tracheal cell

lines expressing the wild-type CFTR (PANC-1 and NT-1,

respectively) or CFTRDF508 protein (CFPAC-1 and CFT-2,

respectively). Firstly, we investigated whether oxidative stress is

implicated in the exacerbated apoptotic response of CF cells using

a SOD mimetic and analyzing O2
2 production. Furthermore, we

examined the origin of ROS production. Secondly, analysis of

SOD expressions and activities were performed.

Methods

Reagents
Cell culture reagents, Hank’s balanced salt solution (HBSS), and

trypsin/EDTA were obtained from Lonza (Verviers, Belgium).

Fetal calf serum (FCS) was obtained from Invitrogen (Cergy-

Pontoise, France). Actinomycin D (Act D), staurosporine (St),

propidium iodide (PI), type I-A RNase A, rotenone, allopurinol,

apocynin, and antibody to b-actin were purchased from Sigma-

Aldrich (St. Louis, MO). The SOD mimetic, manganese (III)

tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP)

was obtained from Calbiochem (Nottingham, UK). Ripa lysis

buffer was provided from Upstate Biotech (Hampshire, UK).

Inhibitor of IkB-a phosphorylation (Bay 11-7082) was purchased

from BioMol Research Labs, Inc. (Exeter, UK).

Cell culture and induction of apoptosis
The pancreatic cancer cell line PANC-1 expressing endogenous

CFTR and CFPAC-1, presenting the CFTRDF508 mutation,

were purchased from the American Type Culture Collection

(Rockville, MD). PANC-1 is a human epithelioid pancreas

carcinoma cell line and was grown in DMEM. CFPAC-1 is a

human pancreatic adenocarcinoma cell line and was grown in

IMDM. The tracheal cell line NT-1, derived from non-CF human

fetus, and the CFT-2 cell line, homozygous for the DF508

mutation, were a kind gift from Dr. M. Mergey (UMR S893

INSERM, Paris, France) and were grown in DMEM/F12 (1:1)

[21]. All media were supplemented with 10% heat-inactivated

FCS, 100 mg/ml streptomycin, and 100 U/ml penicillin. CFPAC-

1, NT-1, and CFT-2 cells were incubated in humidified 5% CO2

atmosphere at 37uC. PANC-1 cells were cultured at 37uC in a

humidified atmosphere of 7.5% CO2, as recommended by the

American Type Culture Collection. Cell viability was checked by

Trypan blue exclusion. Cells were seeded at 7.56104 cells in T75

flasks. All experiments were carried out when the cells were 80–

90% confluent. They were incubated in the presence or absence of

Act D (0.5 mg/ml), St (0.33 nM), MnTMPyP (50 mM), Bay 11-

7082 (Bay, 7.5 mM), rotenone (5 mM), apocynin (100 mM) or

allopurinol (50 mM) for 24 h. All agents were used at concentra-

tions at which no cytotoxicity was observed, as deduced from

Trypan blue exclusion.

Superoxide anion (O2-) determination by electronic
paramagnetic resonance (EPR)

After 24 h of apoptosis treatment, cell medium was replaced

with deferoxamine-chelated Krebs-Hepes solution containing 1-

hydroxy-3-methoxycarbonyl-2,5,5-tetramethylpyrrolidin (CMH;

Noxygen, Mainz, Germany) (500 mM), deferoxamine (25 mM),

and diethyldithio carbamate (5 mM) under constant temperature

(37uC) for 30 minutes. Cells when then scrapped and frozen in

plastic tubes and analyzed in a Dewar flask by EPR spectroscopy

using a table-top x-band spectrometer Miniscope (MS200;

Magnettech, Berlin, Germany), as previously described [22].

Values are expressed as amplitude of signal per protein

concentration.

Determination of hypodiploid DNA
After treatments, culture medium was removed from cells

growing in monolayers; adherent cells were trypsinized, detached,

combined with floating cells from the original culture medium,

and centrifuged. Cells were then fixed in 70% ethanol for at least

4 h at 4uC and washed once in 1 mM HBSS Ca2+ before

resuspension for 10 min in a solution containing type I-A RNase A

(0.05 mg/ml) in HBSS containing 1 mM Ca2+ at 37uC. PI was

then added at a final concentration of 0.1 mg/ml, as previously

described [21]. After 15 min in the dark at room temperature,

samples were analyzed by flow cytometry using a FACScan flow

cytometer (Becton Dickinson, San Jose, CA). Data acquisition

(10,000 events in each case) and analysis were conducted using

CELLQuest software (Becton Dickinson). The forward light

scatter setting was E-01.

Western blot analysis
After incubation with apoptosis-inducing agents for 24 h, cells

were scrapped in the presence of 400 ml of Ripa buffer with

10 mg/ml leupeptin, 10 mg/ml pepstatin, 10 mg/ml aprotinin, and

1 mM phenylmethanesulfonylfluoride. Samples containing 20 mg

proteins (Bio-Rad protein assay kit) were separated on 10% SDS-

PAGE. Separated proteins were then blotted onto Hybond-ECL

nitrocellulose membrane (Amersham Biosciences, Buckingham-

shire, UK). Blots were probed with antibodies against Mn-SOD,

Cu/Zn-SOD and EC-SOD (Stressgen, MI), and developed with

horseradish peroxidase-conjugated secondary antibody. Bound

antibodies were revealed by chemiluminescence (Pierce, Rockford,

IL); ß-actin staining was used as control. Enzyme levels were

determined by densitometry analysis and were normalized with

respect to ß-actin.

Determination of SOD activities
Analysis of SOD activities were performed according to the

manufacturer’s instructions (Stressgen, MI). Briefly, cells were

cultured in the absence or in the presence of Act D (0.5 mg/ml) or

St (0.33 nM), and after 24 h, cells were washed, detached with

trypsin and washed with ice cold phosphate buffer saline. EC-

SOD activity measurement was performed using culture superna-

tant and Cu/Zn-SOD and Mn-SOD using cell lysate. Also, Cu/

Zn-SOD was isolated by adding ice-cold chloroform/ethanol

(37.5/62.5 (v/v)) and its activity measured. Absorbance was read

at 405 nm for 10 min at room temperature. Data were expressed

as mg of protein/ml.

Statistical analysis
Data are represented as mean 6 SEM; n represents the number

of experiments. Statistical analysis was carried out using Student’s t

test or non-parametric Mann-Whitney U test. Differences were

considered statistically significant at a value of p,0.05.

Results

The SOD mimetic reduces the increased sensitivity to
apoptogenic agents in cells with CFTR dysfunction

Pancreatic and tracheal cells were incubated in the absence and

in the presence of the SOD mimetic MnTMPyP (50 mM), 30 min

before treatment with pro-apoptotic agents for 24 h. Staining with

Reduced Anti-Oxidant Defenses in Cystic Fibrosis
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PI revealed nuclei with hypodiploid DNA (sub-G1 peak)

corresponding to apoptotic cells, measured by flow cytometry.

As previously described [21], CF cells displayed exacerbated

apoptosis in the presence of Act D or St (Fig. 1, A and B). Higher

concentrations of apoptotic agents did not induce further increase

of apoptosis, but an enhanced necrosis was observed (near of

60%). MnTMPyP treatment had no effect on basal apoptosis

which was not significantly different between normal cells or cells

with CFTR dysfunction (Fig. 1, A and B). Interestingly,

MnTMPyP was able to decrease Act D- and St-induced apoptosis

in CF cells. Indeed, MnTMPyP decreased hypodiploid DNA

content by 29% and 58% in Act D- and St-treated CF pancreatic

cells, respectively (Fig. 1A). Similar results were obtained in

tracheal cells, MnTMPyP inhibited apoptosis by 62% and 73% in

Act D- and St-treated CFT-2 cells, respectively (Fig. 1B). These

results suggest that oxidative stress is involved in the induction of

apoptosis in CF cells.

O2
2 production in normal and CF cells
All types of cells exhibited an EPR feature of signals derived

from CMH-O2
2 complex. Measurement of O2

2 production

shows that, in pancreatic and tracheal normal cells, apoptotic

treatment did not induce significant changes in O2
2 levels (Fig. 2,

A and B). By contrast, Act D- or St-treated CF cells displayed an

increase of O2
2 levels (Fig. 2, A and B). Treatment with the SOD

mimetic MnTMPyP abolished the increase in O2
2 levels evoked

by Act D or St in CF cells (Fig. 2, A and B). To determine the

sources of O2
2 production involved in the induction of apoptosis

in CF cells, both pancreatic and tracheal CF cells were incubated

in the presence of inhibitors of xanthine oxidase (allopurinol),

NADPH oxidase (apocynin) or mitochondrial complex I (rote-

none), and Act D-induced apoptosis was evaluated. Apoptosis

induction was independent of xanthine oxidase in both pancreatic

and tracheal cells. In contrast, rotenone reduced apoptosis in

pancreatic CF cells and apocynin in tracheal CF cells (Table 1).

Because, in CF cells, NF-kB pathway is activated under basal as

well as apoptotic conditions [21], we have investigated the effects

of inhibition of IkB-a phosphorylation on O2
2 production, using

Bay 11-7082. Interestingly, when Ik-Ba phosphorylation was

inhibited in pancreatic CF cells, basal O2
2 production was not

modified but the increase in O2
2 generation induced by apoptotic

agents was reduced (Fig. 2A). Surprisingly, in tracheal CF cells,

inhibition of Ik-Ba phosphorylation induced a strong increase in

O2
2 production and blunted the response evoked by apoptotic

treatment (Fig. 2B).

Expression of SOD in normal and CF cells
As shown in Fig. 3A–D, expression of both Cu/Zn-SOD and

Mn-SOD was down-regulated in CF cells. On the one hand, pro-

apoptotic stimuli significantly decreased Cu/Zn-SOD expression

in normal pancreatic cells (PANC-1) but not in normal tracheal

cells (NT-1). On the other hand, pro-apoptotic stimuli increased

Mn-SOD expression in NT-1 cells but not in PANC-1. Of note

was that pro-apoptotic stimuli had no effect on either Cu/Zn-

SOD or Mn-SOD in CF cells. Concerning EC-SOD, no

difference in expression was observed in both normal and CF

cells (Fig. 3, E and F). In addition, pro-apoptotic treatment had no

effect on EC-SOD expression.

SOD activity in normal and CF cells
Activities of intracellular SODs (Cu/Zn-SOD and Mn-SOD)

and EC-SOD were measured in pancreatic and tracheal cells

(Fig. 4). No differences were observed in Cu/Zn-SOD and Mn-

SOD activities between normal and CF cells. Interestingly, activity

of EC-SOD was lower in CF cells than in normal cells. Pro-

apoptotic treatments did not modify SOD activities.

Discussion

It has been suggested that excessive ROS production accounts

for a variety of the degenerative processes of some human diseases

due to their deleterious effect to target cells [11,23,24]. The data

reported here show that increased susceptibility of apoptosis of

pancreatic and tracheal CF cells is associated with enhanced ROS

Figure 1. The SOD mimetic MnTMPyP reduces the increased
sensitivity to apoptogenic agents of cells with CFTR dysfunc-
tion. (A) At confluence, PANC-1 (n = 6, black bars) and CFPAC-1 (n = 6,
open bars) and (B) NT-1 (n = 6, dark gray bars) and CFT-2 (n = 6, light
gray bars) cells were treated with MnTMPyP (Mn) for 30 min before
treatment with actinomycin D (Act D) or staurosporine (St) for 24 h, or
without any treatment (CTL). Cells were permeabilized with 70%
ethanol and hypodiploid DNA was quantified by the use of propidium
iodide. * p,0.05, *** p,0.001 significantly different from respective
control cells; { p,0.05 significantly different between in the absence
and in the presence of Mn.
doi:10.1371/journal.pone.0024880.g001
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production, because SOD mimetic reduced apoptosis. Also,

inhibition of NF-kB pathway strongly reduced O2
2 production in

CF pancreatic cells suggesting a key role of this pathway in the

regulation of oxidative stress. Furthermore, expression of anti-oxidant

defense enzymes, Cu/Zn-SOD and Mn-SOD, was down-regulated

in CF cells whereas their activities were not affected by CFTR

mutation or by apoptotic treatment. In addition, EC-SOD activity,

but not its expression, was reduced in CF cells when compared to

normal cells. Altogether, these results suggest that disruption of the

balance between ROS generation via NF-kB inhibitor-sensitive

pathway and anti-oxidant defense may account for the sustained

apoptosis and pro-inflammatory profile observed in CF cells.

We have previously shown that both Act D and St induced

apoptosis but not necrosis in CF cells as demonstrated by double

staining Annexin V/propidium iodide and TUNEL assays [21]. In

addition, no apoptosis was observed in control cells under the

same experimental conditions. This was not due to a delayed

apoptotic response, since hypodiploid DNA was measured in all

types of cells after 12 h, 24 h, and 48 h of apoptosis stimulation

and DNA fragmentation was higher in CF cells than in control

cells [21]. In addition, new experiments performed in control cells

using a higher concentration of apoptotic agents showed no

increase of apoptosis, but an enhanced necrosis (near of 60%).

ROS are important mediators of apoptosis mainly in vascular

and epithelial cells, which subsequently initiate a series of local

chemical reactions and genetic alterations resulting in an

amplification of the initial ROS-mediated tissue damage and/or

cytotoxicity [25]. It is estimated that normal levels of ROS are

Figure 2. Superoxide anion production by pancreatic and tracheal cell lines after pro-apoptotic treatments. (A) At confluence, PANC-1
(n = 5, black bars) and CFPAC-1 (n = 5, open bars), and (B) NT-1 (n = 5, dark gray bars) and CFT-2 (n = 5, light gray bars) cells were treated with the SOD
mimetic MnTMPyP (Mn) for 30 min or with the inhibitor of phosphorylation of IkB-a, Bay-11702 (Bay) for 30 min before treatment with actinomycin D
(ActD) or staurosporine (St) for 24 h, or without any treatment (CTL). Then, cells were incubated in the presence of superoxide anion spin trap and
quantification of the amplitude of the superoxide anion-CMH complex signal was performed by electronic paramagnetic resonance. Values are
expressed as units per protein concentration (mg/ml). * p,0.05, ** p,0.01 significantly different from respective control cells; {{ p,0.01 significantly
different from in the absence of Bay. NS = not significant.
doi:10.1371/journal.pone.0024880.g002
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efficiently detoxified by endogenous enzymatic ROS scavengers

such as SOD [26]. However, under conditions associated with

excessive ROS production, the rate of ROS generated can exceed

the capacity of anti-oxidant defense mechanisms to scavenge ROS

and prevent deleterious ROS-evoked reactions. Concerning CF, it

has been shown that endogenous ROS and lipid peroxidation

levels are higher in CFTR2/2 lung when compared to wild-type

(CFTR+/+) in basal conditions, despite a strong enzymatic

antioxidant expression involving SOD, indicating a constitutive

redox imbalance [27]. Also, increased oxidative stress is respon-

sible to defective autophagy in CF cells resulting in the

accumulation of misfolded mutant CFTR protein [28]. Here, we

provide evidence that O2
2 mediated exacerbated apoptosis in CF

cells since SOD mimetic, MnTMPyP, was able to reduce

apoptosis induced by Act D and St. It has been reported that, in

hepatocytes, oxidative stress induced by O2
2 activates caspases

Table 1. Effects of inhibition of NADPH oxidase by apocynin,
xanthine oxidase by allopurinol and mitochondrial complex I
by rotenone on actinomycin D-induced apoptosis in pancreatic
(CFPAC-1) and tracheal (CFT-2) cystic fibrosis cells (n = 5).

CFPAC-1 CFT-2

Actinomycin D

Apocynin 0.460.6% 1460.02%*

Allopurinol 4.160.4% 1160.1%

Rotenone 1260.5%* 1.160.4%

Data are expressed in percentage of inhibition of actinomycin D-induced
apoptosis.
*p,0.05.
doi:10.1371/journal.pone.0024880.t001

Figure 3. Expression of SOD in pancreatic and tracheal cells. At confluence, PANC-1 (n = 5, black bars) and CFPAC-1 (n = 5, open bars), NT-1
(n = 5, dark gray bars) and CFT-2 (n = 5, light gray bars) cells were treated with actinomycin D (Act D) or staurosporine (St) for 24 h, or without any
treatment (CTL). Five determinations yielding similar results were performed. A b-actin control was included. Western-Blot were performed for Cu/Zn-
SOD (A, B), for Mn-SOD (C, D) and for EC-SOD (E, F). SOD expressions were quantified by densitometric analysis and measurements were normalized
with respect to b-actin. Densitometry values are given as mean 6 SEM * p,0.05 significantly different from respective control cells; { p,0.05, {{
p,0.01 significantly different between both types of cells.
doi:10.1371/journal.pone.0024880.g003
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and evokes mitochondria-mediated apoptosis through the involve-

ment of the Bcl-2 family proteins [29]. Regarding the source of

O2
2, whereas mitochondria seem to play a role in pancreatic CF

cells, inhibition of NADPH oxidase with apocynin reduced

apoptosis in tracheal CF cells indicating the implication of

NADPH oxidase. These results are in accordance with those

showing that the main source of O2
2 in pancreatic and tracheal

cells is mitochondria and NADPH oxidase, respectively. Thus, in

pancreatic cells, mitochondrial complex I and III are involved in

ROS generation leading to apoptosis induction [30]. In tracheal

epithelial and smooth muscle cells, the increase of O2
2 production

via the activation of NADPH oxidase may exacerbate pulmonary

inflammation [31,32]. However, we cannot exclude that other

sources of O2
2 might be implicated in the mechanisms leading to

apoptosis in CF cells. Indeed, inhibition of complex I with

rotenone reduced Act D-induced apoptosis of pancreatic CF cells

about ,12% whereas the SOD mimetic reduced it ,30%. Similar

results were observed in tracheal CF cells. These results suggest

that probably other sources of O2
2 are involved in the induction

of apoptosis in CF cells.

Interestingly, (i) basal O2
2 production was similar in all cell

types, (ii) apoptotic treatment did not modify O2
2 production in

normal cells, (iii) in CF cells, apoptotic treatment enhanced O2
2

production, (iv) inhibition of NF-kB pathway reduced apoptosis-

induced O2
2 production in pancreatic CF cells, and (v) in tracheal

CF cells, the NF-kB pathway seems to regulate basal production of

O2
2. We have previously shown that NF-kB pathway controls

apoptosis and inflammation in CF cells [21]. Altogether these

results indicate that NF-kB pathway, in part via stimulation of

oxidative stress, plays an important role in mediating both

apoptosis and inflammation in CF cells. Unexpectedly, inhibition

of NF-kB pathway, in the absence of apoptosis inducers, elicited a

strong increase on O2
2 production only in tracheal CF cells,

suggesting a beneficial role for NF-kB activation in tracheal, but

not pancreatic, CF cells. It is possible that differences in the

regulation of basal O2
2 production by NF-kB are related to the

different profile of pro-inflammatroy secretome of both types of

cells [21] or the regulation of NADPH oxidase activity by the NF-

kB pathway [32,33]. Under these conditions, apoptotic stimuli

failed to further enhance O2
2 production, probably because the

system was already exhausted upon blockade of NF-kB pathway.

This also strengthens the hypothesis that an exacerbated negative

control of O2
2 production via NF-kB pathway under normal

conditions. Indeed, dual effects of NF-kB by exerting either

protective or deleterious effect have been reported depending on

the conditions [34].

EC-SOD is highly expressed in airways and up-regulated in

animal models of lung injury [20]. These results raise the

possibility that SODs may play a role in CF. This hypothesis

was further assessed by looking at both expressions and activities of

Figure 4. Activity of SODs in pancreatic and tracheal cells. At confluence, PANC-1 (n = 5, black bars) and CFPAC-1 (n = 5, open bars), NT-1
(n = 5, dark gray bars) and CFT-2 (n = 5, light gray bars) cells were treated with actinomycin D (Act D) or staurosporine (St) for 24 h, or without any
treatment (CTL). Activity of both Cu/Zn-SOD and Mn-SOD are measured in A and B, and activity of EC-SOD in C and D. Enzymatic activity is expressed
in absorbance units (A) per total protein concentration (mg/ml). { p,0.05, {{ p,0.01, {{{ p,0.001 significantly different between both types of cells.
doi:10.1371/journal.pone.0024880.g004
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three isoforms of SODs. Expression of Cu/Zn-SOD and Mn-

SOD isoforms was reduced in CF cells when compared to normal

cells even though their activities were not modified. The fact that

apoptotic treatments exerted differential effects on the two

isoforms in the normal but not in CF cells suggests that these

stimuli might not play a major role in controlling the expression of

these enzymes in CF. By contrast, EC-SOD expression was not

modified but its activity was reduced in CF cells. Thus, although

an insufficient expression of SODs could account for an increased

level of O2
2, it is most likely that the reduction in EC-SOD

activity plays an essential role in the elevation on O2
2 levels. In

agreement with the present results, Madarasi et al. [35] have

shown that in plasma from patients with CF, SOD activities were

significantly lower when compared with healthy subjects. Also,

reduced activity of Cu/Zn-SOD has been described in mononu-

clear, polymorphonuclear and red cells in CF patients [36,37].

Although EC-SOD has not been studied in CF, it has been shown

that EC-SOD overexpression attenuates endotoxin-induced acute

lung injury [38] and EC-SOD knock-out mice are more sensitive

to pulmonary inflammation than wild type mice [39] suggesting

that EC-SOD limits injury in response to many pulmonary insults.

Altogether, these results suggest a reduced anti-oxidant defense

mechanism in CF cells, at least in part, via diminished EC-SOD

activity.

In conclusion, we provide evidence that, in CFTR mutated

cells, the link between increased apoptosis and NF-kB activation

associated with inflammation results in high levels of oxidative

stress (Fig. 5). These observations further underscore a reduced

anti-oxidant defense mechanism at least in part via diminished

EC-SOD activity and subtle regulation of Cu/Zn-SOD and Mn-

SOD expression and activities. These data point to new

therapeutic possibilities targeting anti-oxidant pathways to reduce

oxidative stress and apoptosis in CF cells, and thus to limit pro-

inflammatory response in this pathology.
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