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Anatomofunctional bimodality 
imaging for plant phenotyping: 
An insight through depth 
imaging coupled to thermal 
imaging
Yann Chéné, Étienne Belin, François Chapeau-Blondeau, 
Valérie Caffier, Tristan Boureau, and David Rousseau

9.1 Introduction
The shoots of the plants constitute challenging scenes for computer 
vision. Leaves, distributed with multiple orientations and various sizes, 
are spatially arranged along the three-dimensional (3D) networked archi-
tecture of the plants. When observed with imaging systems, the shoots of 
the plants form complex 3D textures with various illuminations, depths, 
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or color details. These have been shown, for instance, to display fractal 
properties with scale invariance in 2D projections (Ruderman and Bialek, 
1994) or in 3D (Boudon et al., 2013). As a result, the detection, or the seg-
mentation, of items in such complex scenes raises specific questions that 
may require selection, adaptation, or even the developments of new imag-
ing systems or of new image processing algorithms. These rather funda-
mental informational concerns also meet the need for plant scientists to 
perform noninvasive, rapid, automatic observations on large populations 
of plants to confront phenotypic data and genomic data now available at 
high throughput. Among applications requiring high-throughput pheno-
typing of plants with computer vision is the segmentation of individual 
leaves on the entire plant (Biskup et al., 2007; Omasa et al., 2007; Klose et 
al., 2009; Kraft et al., 2010; Fiorani et al., 2012; Chéné et al., 2012). Different 
techniques of depth cameras have been used in the researches with a vari-
ety of observation scales, including small plants (Klose et al., 2009; Kraft 
et al., 2010; Fiorani et al., 2012), more structured shoots of entire plants 
(Chéné et al., 2012), and canopy (Biskup et al., 2007; Omasa et al., 2007). It 
would therefore be interesting to push forward the proofs of feasibility 
given in the works (Biskup et al., 2007; Omasa et al., 2007; Klose et al., 2009; 
Kraft et al., 2010; Fiorani et al., 2012; Chéné et al., 2012) by comparing how 
the depth cameras compete for leaf segmentation on the same plants. We 
propose to contribute in this direction in this chapter. Leaf segmentation 
from depth information gives access to shape measurement as illustrated 
in several reports (Biskup et al., 2007; Omasa et al., 2007; Klose et al., 2009; 
Kraft et al., 2010; Fiorani et al., 2012; Chéné et al., 2012), but as underlined 
in Fiorani et al. (2012) and Chéné et al. (2012), it is also possible to couple 
the anatomic information extracted from depth imaging with functional 
information like water content, chlorophyll efficiency, nutrient content, or 
pathogen presence at the scale of the leaf. Anatomofunctional imaging 
providing registered bimodal information has been developed for bio-
medical imaging with the anatomic information of, for instance, computed 
tomography coupled with the functional imaging of magnetic resonance 
imaging or positron emitted tomography. Such anatomofunctional imag-
ing modalities have been applied to plant imaging, but their large-scale 
application is rather limited by their cost and low throughput (Jahnke et 
al., 2009; Fiorani et al., 2012). In this report we demonstrate how the associ-
ation of depth imaging with an existing functional imaging system could 
constitute a new direction of instrumentation development for a variety of 
low-cost anatomofunctional bimodal imaging in plant phenotyping. The 
chapter is organized as follows. Section 9.2 gives a classification and a 
comparison of depth cameras. We then review in Section 9.3 the existing 
functional imaging available in plant science and illustrate with a study 
case the monitoring of the development of a pathogen, apple scab, on an 
entire plant at the scale of the leaf with functional information extracted 
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from thermal imaging and anatomic information extracted from depth 
imaging. Section 9.4 details a registration approach between the anatomic 
and functional images with examples on apple scab. Section 9.5 concludes 
and gives a set of perspective opened by this work.

9.2 Contactless optical depth cameras
3D scanning methods can be classified in terms of physical principles 
such as contact or contactless, destructive or nondestructive, reflection or 
transmission, and optical or nonoptical, as organized in Figure 9.1. In this 
report, we focus on depth cameras based on contactless optical 3D scan-
ning methods. These cameras use active or passive methods. In passive 
methods, the depth is estimated from scene properties, sensor position, 
and sensor geometry in ambient natural light (see Ballan et al., 2009, for a 
recent overview). In active methods, a controlled light source illuminates 
the scene and depth is estimated from information included in the scene 
reflectance (Blais, 2004, for a review with some manufacturers links). The 
choice of a given depth camera depends on various parameters (Sansoni 
et al., 2009, for a methodological approach), including depth accuracy, 
depth range, experimental conditions (indoor or outdoor, with or without 
natural light), acquisition time (object in movement or not), object proper-
ties (textured or not), and the allocated budget. In this chapter, we propose 
to review the physical principles at work for the depth estimation and the 
resulting limitations for each method highlighted in Figure 9.1, and dis-
cuss their practical interest for leaf segmentation on plants.

9.2.1 Passive depth cameras

9.2.1.1 Multiview

9.2.1.1.1  Stereovision methods. Stereovision, also named computa-
tional stereovision, reconstructs scenes in depth from two or more dif-
ferent points of view taken with standard cameras. Figure 9.2a provides 
the scheme of a stereovision system with two cameras. For one real point 
p in the scene, each camera gives a projection of this point in its image 
plane (pixels pl and pr in Figure 9.2a). The projected points are conjugated. 
Extrinsic parameters of the cameras (relative positions of the projected 
points in camera images, global system geometry) and intrinsic param-
eters of the cameras (focal length, distortion) allow us to determine the 
real 3D position of the projected points. Intrinsic and extrinsic parameters 
can be determined thanks to a calibration step (Heikkila, 2000; Sturm and 
Maybank, 1999; Tsai, 1987; Zhang et al., 1999; Bouguet, 2004). The matching 
of the conjugated points in different images (two or more), as explained 
in Nalpantidis et al. (2007) and Brown et al. (2003), can be solved with 
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local methods or global methods. Local methods analyze the subwindow 
around the considered point (Bhat and Nayar, 1998; Birchfield and Tomasi, 
1999; Kluth, et al., 1992). These methods are fast but not very accurate. 
Global methods (Birchfield and Tomasi, 1999; Tomasi and Manduchi, 1998; 
Boykov et al., 2001; Scharstein and Szeliski, 1998; Sun et al., 2003; Kutulakos 
and Steiz, 2000) are more accurate but slower than local methods. Certain 
scene points are visible with one camera but not with the other camera, 
as shown in Figure  9.2b. The matching algorithms alone cannot solve 
such occlusion problems. Occlusion points can be detected by different 
algorithms either before or after matching of nonoccluded points (Wildes, 
1991; Fua, 1993; Silva and Santos Victor, 2000; Birchfield and Tomasi, 1999). 
The use of more than two cameras improves accuracy and reduces occlu-
sion problems (Satoh and Ohta, 1996; Nakamura et al., 1996). Stereovision 
systems can be composed of low-cost cameras. The depth accuracy of a 
stereovision system is a function of the distance between the cameras 
(the baseline b) and of the camera resolutions, but can be very high when 
matching and occlusion problems are solved. Stereovision systems can be 
used in a field or greenhouse. The relative position of cameras must not 
be modified after the calibration steps. The frame rate of stereovision sys-
tems depends on the chosen algorithms, but it is currently rare to access 
real-time acquisition and display of the depth with stereovision.

9.2.1.1.2  Depth from focus/defocus methods. Depth from focus meth-
ods and depth from defocus methods are based on a similar principle. As 
shown in Figure 9.3, an object point P of the scene is conjugated with the 
focus point P0 across a lens. If the sensor plane is not superimposed with 
the focus plane, the image of P in the sensor plane is a disk of radius r. 
This translates in a blurry appearance in the image. The size of the disk 
depends on the focal length of the lens and on the distance d between the 
object plane and the lens. This blur can be modeled as a convolution by the 
point spread function (PSF). Depth from focus methods uses a measure 
of sharpness with translations of the object to determine its 3D shape. The 
object is set on a motorized translational stage (e.g., Minhas et al., 2009; 

Right cameraLeft camera
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B

Figure 9.2 The stereovision system and its possible occlusions. (a) Principle 
scheme of a stereovision system with two cameras. (b) Illustration of occlusions.
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Nayar and Nakagawa, 1994). At each increment of the translation stage, 
the vision sensor acquires an image that is blurred for points out of the 
focused plane and sharp for points in the focus plane. In each point of the 
object, blur appearance is like the application of a low-pass filter on the 
focused image. The quantification of focus on each point of the object in 
an image can be done by quantifying the amount of high spatial frequen-
cies (Xiong and Shafer, 1993; Nayar and Nakagawa, 1994; Subbarao and 
Choi, 1995; Martinez Baena et al., 1997; Choi and Yun, 2000; Helmli and 
Scherer, 2001; Ahmad and Choi, 2005, 2007; Malik and Choi, 2007, 2008;  
Minhas et al., 2009). All these focus measures work on highly textured 
objects. In each object point, the evolution of focus is computed as a func-
tion of the position of the translation stage. The position of the transla-
tional stage corresponding to the maxima of the focus measure gives the 
depth of the considered point. In depth from focus methods, the vision 
sensor can be a low-cost webcam. Due to the translation stage, depth from 
focus systems are cumbersome and hardly usable in the field. In depth 
from defocus methods the lens parameters (aperture, focal) are changed 
so that the scene does not have to be translated. The defocus measure con-
sists in approximating the PSF in each point of the scene. The PSF can be 
approximated only for textured subwindows and for objects out of field 
depth. For each scene point, the PSF approximation is done locally in sub-
windows with a statistical framework (Rajagopalan and Chaudhuri, 1999; 
Schechner and Kiryati, 1999; Farid and Simoncelli, 1998) or with deter-
ministic optimization (Xiong and Shafer, 1995; Gokstorp, 1994; Favaro and 
Soatto, 2000; Favaro et al., 2003; Trouvé et al., 2011). Depth from defocus 
methods must use vision sensors with well-known parameters (aperture, 
focal). The use of low-cost webcams for these methods is therefore prohib-
ited. The depth from defocus systems are suitable for use in greenhouse 
on highly textured and nonmovable plants.

9.2.1.2 One view
9.2.1.2.1  Chromatic depth from defocus. The chromatic depth 

from the defocus method (Trouvé et al., 2012) uses depth from defocus 

Lens Image plan

P

O

σ

f

P´

Figure 9.3 Principle scheme of blur in camera.

6



principles, except that the different images required to estimate depth are 
acquired at the same time without changing lens parameters. It uses the 
association of color vision sensor and a chromatic lens. A color vision sen-
sor uses a Bayer filter to have the red, green, and blue (RGB) values in 
each pixel. Each channel (red, green, and blue) of a color image represents 
the image of a definite wavelength interval. The focal length of a chro-
matic lens varies with wavelength. The association of a color vision sen-
sor with a chromatic lens leads to three different blurred images, one for 
each channel. Then, for each pixel of each channel, the PSF can be locally 
approximated with depth from defocus methods. So, in each pixel there 
is a unique triplet for the estimation of the radius r. Finally, this triplet, 
obtained with only one acquisition, is used to estimate the depth of the 
scene at each pixel. Chromatic depth from defocus methods use a vision 
sensor associated with a chromatic lens, which is not low cost. The chro-
matic depth from defocus systems can be used in a field or greenhouse 
with plants contrasted in color and in texture.

9.2.1.2.2  Shape from shading methods. The shape of a continuous 
object influences the reflectance of light. Shapes from shading methods 
are based on the perfect knowledge of the position of the camera. The rel-
ative intensity in each camera pixel allows us to retrieve the value of the 
shape gradient norm. The shape gradient is equivalent to normal coordi-
nates in each object point. The object shape is the integration of normal 
coordinates. To solve shape from shading problems, several approaches 
can be used. Minimization approaches solve the problem with an opti-
mization process based on minimization of several constraints (Szeliski, 
1991; Courteille et al., 2004; Crouzil et al., 2003). Constraints can be on 
brightness, smoothness, and gradient intensity. There are also propa-
gation approaches (Bichsel and Pentland, 1992; Dupuis and Oliensis, 
1992; Rouy and Tourin, 1992). These methods use reference points with 
a known shape or with unique solutions, like singular points (points 
with intensity maximum). Then, there are the local approaches where 
the type of shape expected is known (spherical, cylindrical) (Lee and 
Rosenfeld, 1985; Hayakawa et al., 1994). The normal direction to the 
shape at each pixel is determined with derivatives. Finally, there are 
the linear approaches where the nonlinear problem is solved as a linear 
problem (Pentland, 1990; Ping Sing and Shah, 1994). These methods lin-
earize the luminance image. Zhang et al. (1999) and Durou et al. (2008) 
give an overview of shape from shading methods with comparisons. 
Shape from shading methods can be implemented with a low-cost web-
cam. However, its depth accuracy is the lowest among all presented 
depth cameras. These methods are disrupted for textured objects and 
by additional light. Objects must be continuous, and measures can be 
done in a field or greenhouse.
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9.2.1.2.3  Plenoptic. The plenoptic (Ng et al., 2005; Lumsdaine and 
Georgiev, 2009) camera uses, like conventional vision system, a lens and 
a vision sensor. An additional array of microlenses is fixed before the 
vision sensor plane at a distance f corresponding to the focal length of 
each microlens of the sensor plane. The n × n sensor pixels matrix beyond 
each microlens allows us to capture the subimage provided by the micro-
lens. In one acquisition of a scene, a plenoptic camera captures a stack of 
images for each sensor position of a conventional camera. This stack of 
focused images can be obtained with the Fourier slice photography (Ng, 
2005) or the discrete focal stack transform from the global image (Nava 
et al., 2008). The scene depth can be processed, from the stack of focused 
images, with methods of depth from focus or depth from defocus (Bishop 
and Favaro, 2009; Lüke et al., 2009). Plenoptic systems are very costly. The 
depth accuracy depends on the level of texture of the scene. Plenoptic 
cameras can be used in a field or greenhouse.

9.2.2 Active depth cameras

9.2.2.1 Structured lighting methods

9.2.2.1.1  Three-dimensional laser scanner. Three-dimensional laser 
scanners (Amann et al., 2001; Pfeifer and Briese, 2007) use a laser as an 
optical source. The most widespread methods are based on triangulation, 
time of flight (TOF), phase shift, and frequency modulation. Similar to ste-
reovision principle, the laser scanner triangulation methods (Veatch and 
Davis, 1990; Fu et al., 2012; Dorsch et al., 1994; Buzinski et al., 1992) rely on 
geometric properties. One camera of Figure 9.2a is substituted by the laser. 
The laser point is emitted toward the scene and the camera visualizes its 
reflection position. The relative position between the laser and the cam-
era is known. Thus, the distance between the laser scanner reference and 
the scene can be computed thanks to the position of the reflection on the 
plane of the camera. With this method, the wider the baseline, the smaller 
the error on z. The error on z also depends on the knowledge accuracy 
of the relative position between the laser and the camera. Instead of the 
laser point, this method also works with laser stripes. Each range of the 
sampling stripe is defined by its position on the image sensor. The TOF 
method (Hiskett et al., 2008; Myllylä et al., 1999) uses the time between the 
emission and the reception of a laser pulse. The laser pulse is emitted at a 
known time. Then, it is scattered by the scene and captured by the photo-
diode. Knowing the speed of light, the distance between the laser scanner 
and the point scene can be computed. The minimum measurable depth 
is limited by the length of the emitted pulse. The depth error depends on 
the accuracy of the time calculator. The phase shift method (Nakamura 
et al., 2000; Poujouly and Journet, 2000) uses the phase shift between the 
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emitted and the reflected laser wave. The emitted wave is continuous and 
its amplitude is modulated at a given frequency. The photodiode senses 
the reflected wave. Then, the phase difference is computed. The distance 
between laser scanner and the scene point is processed from this phase 
shift. The phase ambiguity, with a value more than 2π, limits the maxi-
mum measurable depth. The frequency modulation method (Piracha et 
al., 2010; Agishev et al., 2006) uses, like the phase shift method, a con-
tinuous laser wave with amplitude modulation, but its frequency is also 
modulated. The evolution of the frequency in time is used to determine 
depth. The reflected wave has the same frequency profile as the emitted 
wave, except that it is shifted in time. This shift in time corresponds to the 
time of flight of the wave, so that the depth can be estimated. In all these 
methods, to obtain a depth map, the laser source must scan the scene. This 
scanning is, in most cases, done with the association of a mirror fixed on 
a mechanical system that changes its orientation. The depth sensor space 
resolution depends on this system. Three-dimensional laser scanners give 
the highest depth accuracy among all the depth cameras presented here. 
However, they are also very high-cost 3D sensors. They can be used in a 
field or greenhouse. Objects must be fixed. Objects’ color or texture did 
not disrupt depth measurement. Also, the time required for the mechani-
cal scan limits the rate of image acquisition, which cannot be performed 
at video rates.

9.2.2.1.2  2D structured lighting. The use of a 2D structured light-
ing (see Geng, 2011; Salvi et al., 2010, for overviews) pattern allows us 
to scan the entire scene at the same time. In each case, the source of 
light is associated with a vision sensor. This sensor visualizes the defor-
mation of the 2D structured lighting pattern emitted in the scene. The 
specific form of this pattern allows us to link each measure point of the 
emitted pattern with its conjugate in the reflected pattern. Finally, each 
scene depth is calculated by triangulation. One camera of Figure 9.2a is 
substituted by the 2D structured lighting pattern. The spatial resolution 
depends on the resolution of the emitted pattern. When scenes are static, 
it is possible to use sequential projections of 2D structured patterns. A 
method relies on the binary code principle. The association of all pat-
terns allows us to code each stripe with a unique binary code (Ishii et 
al., 2007; Valkenburg and McIvor, 1998). However, a large number of pat-
terns is needed to code a wide surface with a good spatial resolution. 
Thus, to decrease the number of required patterns, it is possible to add 
gray-level stripes in the code (Krattenthaler et al., 1994). Another method 
with the sequential projections is the phase shift method (Huang and 
Zhang, 2006). All patterns have a space sinusoidal amplitude modula-
tion with a given frequency, but they are phase shifted. The 3D shape of 
the scene changes the phase of each pattern. The association of at least 
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three patterns allows us to retrieve the phase deformation due to the arc 
tangent function. Finally, the 3D shape is retrieved by comparison with a 
reference. The use of arc tangent induces the need for an unwrapping step 
and forbids scanning of an the surface with wide depth skip. To improve 
the frame rate of the depth sensor and follow the moved object, continu-
ous stripe indexing patterns or grid indexing patterns can be used. In 
continuous patterns, each stripe is coded by one gray level (Durdle et al., 
1998) or color. The use of colors allows us to improve the stripe number 
and the stripes’ segmentation. The rainbow 3D camera uses a continuous 
color pattern (Geng, 1996). Each stripe is defined by one color of the rain-
bow. Otherwise, stripes can be indexed by their composition. All stripes 
have the same color, but each stripe is segmented in several substripes, 
which have different lengths (Maruyama and Abe, 1993). For each stripe, 
the segmentation is unique. Moreover, stripes can be indexed in terms of 
their neighbors (Zhang et al., 2002; Monks and Carter, 1993). This index-
ation is based on the De Bruijn sequence. A De Bruijn sequence of rank 
n with k different intensity levels or colors allows us to code kn stripes. 
In a De Bruijn sequence, each stripe is at the center of a unique n-length 
word. For stripe detection, two consecutive stripes cannot have the same 
color, so the number of possible stripes is less than kn. A last method is 
the grid indexing. A grid is filled with a pseudorandom law. So each 
subwindow of size n × m is unique. This uniqueness allows us to link 
emitted points and reflected points, and there are 2nm different possibili-
ties with black and white dots (Le Moigne and Waxman, 1988; Ulusoy et 
al., 2009). To improve coding strength, each dot can be substituted by a 
codeword pattern. Codeword patterns can be coded in color (Desjardins 
and Payeur, 2007) or shape (Griffin et al., 1992). However, it is difficult to 
ensure uniqueness of each subwindow. As mentioned above, there are 
several types of 2D structured lighting methods. Each method has its 
own advantages and disadvantages. In this report, we consider a low-
cost 2D lighting structured system that uses a near-infrared random dot 
grid. Its depth accuracy of typically 1 cm is good enough for certain 
plants, as illustrated in Chéné et al. (2012) and later in this chapter. This 
system can be disrupted by external infrared light. So its use in a green-
house is prohibited. However, measures in the field can be done with 
object isolation relative to sunlight. Objects’ color and texture do not 
disturb depth measurement, and objects can move.

9.2.2.2 Nonstructured lighting

9.2.2.2.1  Time of flight (TOF) depth camera. Time of flight (TOF) 
depth cameras (Kolb et al., 2009; Lange and Steiz, 2001) allow us to obtain 
an intensity map and a depth map at the same time. To our knowledge, 
two methods are currently used to determine the scene depth: the 
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continuous modulation wave method and the optical shutter method. 
Both use near-infrared LEDs as a light source and a light sensor. In the 
continuous modulation wave method (Foix et al., 2011; Gokturk et al., 
2004; Lange et al., 2000), the emitted wave is continuous and modulated 
in time. When light is reflected by the scene, the wave is disrupted and 
phase shifted in terms of the scene shape. The reflected wave is sensed, 
in each sensor pixel, with a phase shift due to the depth. Then, to find 
the phase shift in each pixel, the sensor computes a correlation between 
the emitted wave and the reflected wave. The distance between the 
TOF depth camera and the scene in each pixel results from the phase 
shift. The maximal measurable distance depends on the modulation fre-
quency. In the optical shutter method (Iddan and Yahav, 2001; Yahav 
et al., 2007), the emitted wave is a short light pulse. The time of flight 
is limited by a faster shutter. This shutter is in front of the light sensor 
and is opened during a given time interval. So, the duration of this time 
interval sets the measurable depth interval. During the time interval, 
the reflected light comes in each pixel of the sensor. Thus, in each sensor 
pixel, the scene depth depends on the amount of light received by the 
pixel and the total amount of light received by all pixels. These systems 
can be used in a field or greenhouse. Objects’ color and texture do not 
disturb depth measurement and objects can move.

9.2.3 Comparison

In this chapter, we use active depth cameras to constitute anatomofunc-
tional imaging of plants. For illustration, we have considered the two 
plants of Figure 9.4 that we observed with four different depth cameras 
based on structured lighting methods. In this chapter the anatomical 
information of interest is the segmentation of the upper leaves of plants, 
accessible from the top view of the plant. As visible in Figures 9.5 and 
9.6, the depth maps are similar, demonstrating that various choices of 
technologies can produce similar results in terms of anatomical infor-
mation, the choice of the technologies depending on the cost or the 

Plant 1 Plant 2

Figure 9.4 Lateral and top views of the two plants used for depth camera 
comparisons.

11



environmental constraints. A comparison of the four depth cameras 
used to produce Figures 9.5 and 9.6 is given in Table 9.1.

9.3 Functional imaging
We are now ready to consider the association of a functional imaging 
with the anatomical imaging reviewed in the previous section. In this 
report we illustrate anatomophysiological bimodality imaging with 

A

B

C

D

Figure 9.5 (See color insert.) Comparison of four depth cameras with the plant 
1 of Figure 9.4. Each figure line is composed of the point cloud (left), the depth 
image (center), and the segmented image (right). In the image segmented with 
the algorithm of Chéné et al. (2012), only leaves presented in all depth images 
are represented with the same color for each depth camera. (a) Depth camera is 
a Microsoft Kinect that uses a pseudorandom dot grid as the structured lighting 
pattern. (b) Depth camera is a laser scanner that uses triangulation. (c) Depth 
camera is a hybrid depth camera that uses 2D structured lighting and stereovi-
sion (structured lighting pattern allows correspondences between two cameras). 
(d) Depth camera is a 2D structured lighting depth camera that uses a binary 
stripe sequential projection as the structured lighting pattern.
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A

B

C

D

Figure 9.6 (See color insert.) Same as in Figure 9.5 with plant 2 of Figure 9.4.

Table 9.1 Characteristics of the Four Depth Cameras Used in 
Figures 9.5 and 9.6

Kinect
Laser 

scanner
Hybrid 
method

2D structured 
lighting method

Price (€) 150 50,000 30,000 50,000
Lighting type Infrared Visible Visible Visible
Depth resolution (cm) 1 0.01 0.01 0.035
Points number in cloud 307,200 307,200 500,000 1,400,000
Field of view (°) 57 × 23 Unknown 23 × 21 Unknown
Depth interval (cm) 50–600 60–250 32.5–47.5 80 to unknown
Acquisition time (s) 0.03 3 0.01 3.5
Portability + – + –
Greenhouse used No Yes Yes Yes
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a problem of host-pathogen interaction detection on the entire plant. 
There are various existing imaging modalities providing functional 
information on plants. Several review articles have been proposed for 
general purposes (see, for instance, Fiorani et al., 2012, for recent state 
of the art) or for some specific purposes, like host-pathogen interac-
tion (Chaerle and Straeten, 2001; Sankaran et al., 2010). Pathogens (virus, 
bacteria, fungus) can be indirectly detected by their impact on the 
plant physiology. The main functional imaging modalities reported for 
plants are thermography, chlorophyll fluorescence imaging, and hyper-
spectral imaging. These imaging modalities operate at distinct optical 
wavelengths and provide distinct information. Thermography, gazing 
around 10 μm, is linked to many structural and functional characteris-
tics, such as leaf orientation, heat capacity, surface properties, infrared 
absorption, and transpiration rate. Chlorophyll fluorescence imaging 
(Papageorgiou, 2004) indirectly correlates to the amount of excited 
electrons in photosynthetic light reactions and is thus related to the 
photochemical and nonphotochemical charge separation in photosys-
tems. Hyperspectral imaging gives access to various meaningful spec-
tral regions, such as the transition from red to near infrared, the peak 
of green reflectance, and the water absorption bands around 970, 1600, 
and 2100 nm. For a given biological question, a comparison of the con-
trast given by each functional imaging is a preliminary task. We focus 
our attention in this report on the detection of apple scab. Apple scab, 
which is caused by the fungus Venturia inaequalis, requires more than 
10 fungicide treatments per year to be controlled and can be consid-
ered the most serious disease for apple (Bowen et al., 2011). Quantifying 
the development of apple scab at the leaf scale is of major importance 
for studying the apple-scab interaction, as well as for analyzing the 
evolution of pathogenicity in Venturia inaequalis populations, and for 
breeding scab-resistant apple cultivars. Recent studies have undertaken 
the comparison of the detectability of apple scab with thermography, 
hyperspectral, and fluorescence chlorophyll (Delalieux et al., 2009; 
Oerke et al., 2011; Belin et al., 2013). Thermography has been demon-
strated to provide a better detectability, i.e., higher contrast at earlier 
dates. Briefly, in the acquisition conditions described in Belin et al. 
(2013), a max-min difference of temperature greater than 0.21°C on a leaf 
gives a probability of good detection higher than 0.9 and a probability 
of false alarm less than 0.15. Such preliminary detection measurement 
can be done on a single leaf. To translate this detection diagnostic to an 
entire plant, it is then necessary to apply the detection test on images 
separating each of the individual leaves. In the following we therefore 
propose to associate a depth camera with thermal imaging to perform 
apple scab detection on an entire plant.
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9.4 Depth imaging coupled to thermal imaging

The use of several imaging systems allows the combination of different 
scene information. To combine information, relative positions (extrin-
sic parameters) and internal properties of systems (intrinsic parameters) 
must be known. Intrinsic and extrinsic parameters of an imaging system 
can be found with a calibration method. The calibration of multiple color 
cameras has been widely studied (Heikkila, 2000; Zhang et al., 1999; 
Sturm and Maybank, 1999; Tsai, 1987; Bouguet, 2004). The same calibra-
tion procedure can be used to calibrate thermography (Lagüela et al., 
2011; Luhmann et al., 2010), chlorophyll fluorescence imaging (Bellasio et 
al., 2012), and hyperspectral imaging. The calibration of a depth camera 
depends on the physical principle used to find the depth of the scene 
(Underwood et al., 2007; Sansoni et al., 2000; Krotkov, 1991; Antone and 
Friedman, 2007) for laser scanner calibration (Fuchs and Hirzinger, 
2008; Kahlmann et al., 2006; Lichti, 2008; Lindner and Kolb, 2006), for 
TOF depth camera calibration (Chen et al., 2009; Li et al., 2008; Zhang et 
al., 2002; Zhou and Zhang, 2005), or for 2D structured lighting system 
calibration. Once the calibration of each imaging system is known, the 
association of both imaging systems can be done. The most widespread 
associations found in the literature are a depth camera with color cam-
era (Zhang and Pless, 2004; Unnikrishnan and Hebert, 2005) for laser 
scanner depth cameras (Lindner et al., 2007; Kim et al., 2008), for TOF 
depth cameras (Herrera et al., 2012; Zhang and Zhang, 2011; Geiger et al., 
2012; Fortenbury and Guerra Filho, 2012), and for a 2D structured light-
ing depth camera. The association of a depth camera and a physiological 
imaging has already been reported. In a biomedical context, Nagatani et 
al. (2012) and Skala et al. (2011) show the association of a thermal imag-
ing respectively with a scanner laser and with a 2D structured lighting 
depth camera. In a plant science context, Bellasio et al. (2012) performs 
the association of a chlorophyll fluorescence imaging and a 2D struc-
tured lighting depth camera.

To perform the association of a 2D structured lighting depth cam-
era with thermal imaging, we use the method presented in Herrera et 
al. (2012). The thermal imaging system and the depth camera can both 
be modeled by the pinhole model, also named the perspective projection 
model. Figure 9.7 gives the principle scheme of the pinhole model. Then, 
the model, described in Heikkila (2000), is used to fix intrinsic and extrin-
sic parameters of each imaging system. In the pinhole model, the transfor-
mation of a 3D real point Pw in a 2D sensor pixel p follows a homography 
with the projection center Os. Extrinsic parameters allow us to pass from 
the world coordinates reference {W} to the system coordinates reference 
{S}. A point Pw with 3D coordinates [Xw, Yw, Zw]T in the world coordinates 
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reference {W} becomes Ps with the coordinates [Xs, Ys, Zs]T in the system 
coordinates reference {S} following

Ps = RPw + t (9.1)

where R is the 3 × 3 rotation matrix and t is the 3 × 1 translation matrix. In 
the pinhole model, the extrinsic parameters are the rotation matrix R and 
the translation matrix t.

Intrinsic parameters allow the transformation of Ps in p with 2D coor-
dinates [u, v]T in the image coordinates reference {I}. First, the 3D point Ps 
is transformed in 2D point Pn by normalization, so coordinates of Pn are
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Next, owing to optical system distortions (radial and tangential), Pn 
becomes Pd such as

Pd = (1 + k1r
2 + k2r

4 + k5r
6)Pn + Pg (9.3)

where Pg = [2k3XnYn + k4 (r 2 + 2Xn
2), k3 (r2 + 2Yn

2) + 2k4XnYn]T, r2 = Xn
2 + Yn

2, 
and ki, with i = 1, …, 5, are the distortion coefficients. The pixel image of 
the 3D real point Pw in the image coordinates reference I is
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Figure 9.7 The principle scheme of the pinhole model.
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where fcx and fcy are the focal length in pixels in directions x and y and P0 = 
[u0, v0]T is named the principal point (intersection between the optical axis zs 
and the image plane). In a pinhole model, intrinsic parameters are the focal 
length fc = [fcx, fcy], the principal point P0, and the distortion vector k = [k1, 
…, k5]. For depth cameras, depth calculation and depth distortion param-
eters can be added to intrinsic parameters. In the case of our 2D structured 
lighting depth camera, the depth is obtained from a disparity map. From 
Herrera et al. (2012), in each pixel, the disparity is distorted as follows:

d = dk + Dδ (u, v) exp(α0 − α1d) (9.5)

with d the undistorted disparity, dk the distorted disparity, Dδ (u, v) the 
spatial distortion pattern, and α = [α0, α1], which models the decay of the 
distortion effect. Then, the depth z comes as

z
C d C

1

1 0

=
−

(9.6)

where c = [c0, c1] is the depth calculation matrix. Thus, α, Dδ (u, v), and 
c are added to intrinsic parameters of the depth camera. Once intrinsic 
and extrinsic parameters are defined, the calibration of the anatomofunc-
tional imaging system can be done. Figure 9.8 gives the principle scheme 
of coupling two imaging systems modeled by the pinhole model. The 
calibration step allows us to know the relation between imaging systems. 
Each calibration could be done individually, but the common calibration 
of both imaging systems gives better results. First, intrinsic and extrinsic 
parameters are initialized by use of independent calibrations. The physi-
ological imaging individual calibration is done with Zhang et al. (1999). 
This calibration uses a specific pattern, a chessboard with known dimen-
sions. The chessboard must be well contrasted in terms of the informa-
tion delivered by the physiological imaging system. For the depth camera, 
intrinsic parameters are initialized with well-known manufacturer val-
ues. Next, the relative position between imaging systems is approximated 
by comparing the chessboard plane equation in both calibration images. 
Finally, intrinsic and extrinsic parameters are optimized by minimization 
of the measurement reprojection errors with all the parameters. A stan-
dard Levenberg-Marquardt algorithm was used to solve the nonlinear 
minimization problem.
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An example of an anatomofunctional imaging system is the coupling 
of our depth camera with a thermal imaging. Figure 9.9 (left) shows the 
rigid coupling. The whole system is calibrated with the method of Herrera 
et al. (2012). Figure 9.10 gives an example of the calibration of a scene. The 
calibration chessboard is in paper and sticks on a metallic plan. Use of a 
metallic plan allows us to have a well-contrasted calibration chessboard 
for thermal imaging, due to the strong difference in thermal reflectance 
between paper and metal. After calibration, the calibration file allows us 
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0pp
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Figure 9.8 The principle scheme of coupling two imaging systems demonstrated 
by the pinhole model.

Bottom viewTop viewStructured lighting depth camera

Structured lighting Infrared sensor

�ermal imaging

+

Figure 9.9 (See color insert.) Left: The anatomofunctional imaging system in this 
chapter is composed of a depth camera using the 2D structured lighting (binary 
dot pseudorandom grid) method and a thermal imaging. Right: An acquisition on 
a plant is done by one shot taken in plant top view.
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to convert disparity in depth expressed in meters and to register the depth 
information on the thermal image. We illustrate the anatomofunctional 
imaging system with the example of plant 2 of Figure 9.4. As shown in 
Figure 9.9 (right), an acquisition on a plant is done by one shot taken from 
the plant top view. Figure 9.11 shows the thermal image and the regis-
tered depth map of the plant top view. The segmented image of leaves, 
visible in Figure 9.12, is obtained by application of the depth segmentation 
algorithm of Chéné et al. (2012). Application of the edges of the leaves of 
the plant on the thermal image is given to visualize calibration results. In 
this image, each leaf is associated with a number. This number allows the 
creation of a mask for each plant leaf. Figure 9.13 shows the application 
of each leaf mask on the thermal imaging. Figure  9.14 gives individual 
thermal images of each segmented leaf of a plant. Each image is the result 
of application of the leaf mask on the thermal image. The calibration step 
gives a good registration of depth image on the thermal image. There 

A B C

Figure 9.10 (See color insert.) A calibration scene. (a) The RGB image of the calibra-
tion chessboard on the metallic plane. (b) The thermal image of the calibration chess-
board on the metallic plan. (c) The disparity map of the calibration chessboard plan.
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Figure 9.11 (See color insert.) An anatomofunctional imaging composed of 
depth camera and a functional imaging allows us to have two registered images: 
the depth map and the functional image. In this chapter, the anatomofunctional 
imaging system is composed of (a) a thermal imaging providing a thermal image 
and (b) a depth camera providing a depth map.
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are few errors on leaves’ contour, visible in Figure 9.14, which are due to 
Kinect and calibration precision.

9.5 Conclusion
In this chapter, we have presented the potential of depth cameras for ana-
tomic imaging modality of plants in association with functional imaging 
to deliver anatomofunctional imaging for plant science applications. We 
have detailed the various technologies of depth cameras currently avail-
able and discussed their advantages and limitations for plant imaging. 
Overall, a simple but useful message is that there is no single solution for 
plant phenotyping with depth cameras. The suitability of each technol-
ogy depends on the biological question raised. We have illustrated this 
fact with a host-pathogen interaction where a thermal camera is associ-
ated with a depth camera to detect the presence or absence of a pathogen 
from a single top view image on each visible leaf of the upper part of 
the plant. We have provided practical information concerning the image 
registration procedure necessary to couple both the cameras. We also 
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Figure 9.12 (See color insert.) Plant leaves are segmented by application of the depth 
segmentation algorithm of Chéné et al. (2012). Like the depth map, the segmented 
image is registered with the thermal image. In this image, each leaf is associated 
with a number. These numbers allow us to create a mask for each individual leaf.

Figure 9.13 (See color insert.) The edge of each leaf mask is applied on the ther-
mal image. Colors of these edges are equal to the color of the leaf-segmented 
image of Figure 9.12. In this case only leaf 6 is hosting the pathogen.
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demonstrated that for such a biological question, low-cost depth cameras 
can be well adapted if the image acquisition is under controlled light con-
ditions. Anatomofunctional imaging similar to the one illustrated here 
could also serve in extracting information from the branching structure. 
However, it would require higher depth resolution and possibly multiple 
views to allow a full reconstruction of the branching structure of bushy 
plants. It is likely that the grail of an ultimate phenotyping system for 
such more demanding applications may not exist, and that there will be 
an opportunity for multiple technological approaches depending on the 
measurement constraints and the biological question raised.
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