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ABSTRACT: The supramolecular interaction between indi-
vidual single-walled carbon nanotubes and a functional organic
material based on tetrathiafulvalene is investigated by means of
electric transport measurements in a field-effect transistor
configuration as well as by NIR absorption spectroscopy. The
results clearly point to a charge-transfer interaction in which
the adsorbed molecule serves as an electron acceptor for the
nanotubes through its pyrene units. Exposure to iodine vapors
enhances this effect. The comparison with pristine carbon
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nanotube field-effect transistor devices demonstrates the possibility to exploit charge-transfer interactions taking place in
supramolecular assemblies in which a mediator unit is used to transduce and enhance an external signal.

C arbon nanotubes (CNTs) are among the most promising
candidates for new materials in the focus of nanoscience
and nanotechnology. Possessing a wealth of unique chemical
and physical properties, they show great potential for a wide
range of applications and continue to be of increasing
importance in both material and life sciences.'”* Apart from
mechanical robustness and chemical stability, the most
prominent phenomena in CNTs are their superior electronic
transport properties that arise from reduced scattering and,
therefore, less power dissipation in the sp>-hybridized carbon
lattice.>~” The most studied example of devices that sought to
exploit these properties is the carbon nanotube field-effect
transistor (CNTFET)." Intentionally built in the course of
research in promising candidates for postsilicon logic device
technology, their inherent potential to act as chemical sensors
was recognized soon.”®

First, sensitivity toward the electronic environment is a result
of the switching mechanism as well as the device geometry of
CNTEFETs, which is based on contact gating instead of channel
gating like in conventional MOSFETs. In other words, an
electric field, caused, for example, by molecular dipoles of
adsorbed species or charge density changes in the substrate, can
stimulate the response of CNTFET-based sensor devices by
shifiting the threshold voltage Vi.”?'® These effects are,
therefore, termed electrostatic gating. Second, single-walled
CNTs (SWCNTs) themselves can interact electronically
through charge-transfer processes with a broad range of
analytes.*”"'~'® This causes a shift in the CNTFET transfer
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characteristic also because the Fermi level of the CNT is
altered, which, in terms of FET operation, refers to channel
doping. Third, additional charges inside or in close proximity to
the SWCNT can affect the transistor performance through
scattering events.'

Finally, the structural properties of SWCNTs make them
especially well suited for noncovalent association with extended
(bio-) organic molecular structures. The large surface-to-
volume ratio of the sp*-hybridized all-carbon lattice enables
m—n stacking, van der Waals forces, and electrostatic
interactions."’ "*° In studies that sought to investigate these
associations in detail, though, a more complex picture of mutual
influences emerged. Apart from geometry dependencies,
synergistic optoelectronic effects can dominate, especially in
conjugated polymer—SWCNT assemblies and hybrid materi-
als.”** These findings could be applied to the rational design
of functional hybrid CNT-based materials.

Apart from conjugated polymers with desired side-chain
functionalities, small aromatic molecules are among the most
widely used moieties in functionalization agents since they are
ideal “anchor groups” for further noncovalent decoration of
SWCNTSs.”>** Among the latter, pyrene is known to have a
very high affinity to the SWCNT surface.”®
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Here, we present a model system for eflicient chemical
sensors. In our study, iodine sensing is achieved by a CNTFET
noncovalently associated with 2,3-bis[N-(1-pyrenylmethyl)-
aminocarbonylmethylsulfanyl]tetrathiafulvalene 1 (Figure
1A).2**” Compound 1 is capable of intermolecular van der
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Figure 1. (A) Structure of tetrathiafulvalene-based mediator 1
(functional groups highlighted in color). (B) Front and side views
of 1 assembled on a (5,5) nanotube. (C) Iodine over a carbon
nanotube. Parts (B) and (C) are geometry-optimized using the
semiempirical method PM3/vdW.

Waals and sulfur—sulfur interactions as well as 7—7 stacking
and hydrogen bonding allowed by various chemical functions
(highlighted in Figure 1A). The latter are responsible for 1 to
form, in various solvents, three-dimensional networks con-
stituted of supramolecular nanofibers, affording physical gels.*®
Upon solvent evaporation, xerogels are obtained out of solution
in a concentration-dependent manner due to supramolecular
polymerization. The organogelating and charge transport
properties of xerogels derived from 1 in different solvents
have been described, either as a neutral material or in the
oxidized state.”” Incorporation of small amounts of SWCNTs
(<0.1% w) along the gelation process leads to xerogels
presenting a significant increase in conductivity by 4—6 times.
Considering this very low percentage, this result supports a
structuring effect, which is promoted by templation of the
supramolecular polymerization with the SWCNTs. This
phenomenon leads to highly organized assemblies with
significantly modified electronic properties. Now, we investigate
the opposite relation, namely, the influence of 1 on the
properties of SWCNTs at the single SWCNT level.

The redox properties of tetrathiafulvalene (TTF) and its
derivatives are well-established and have been exploited for a
long time in the preparation of electroconducting salts or
switches.”®* In particular, a common feature of TTE-based

molecular structures lies on two stable cationic oxidation states
formed at rather low redox potentials that correspond to the
radical monocation (TTF**) and the dication (TTF?**). The
stability of these states partially stems from a gain in
aromatization energy of the 7 system of TTE.”****' This
gain is also responsible for the low oxidation potentials of most
TTFE derivatives and allows for their oxidation to the radical
cation state with soft oxidizing agents, such as iodine.
Iodine is also known to act as a p-dopant for CNTs.
Charge-transfer interactions in mats of crystalline SWCNT
ropes and thin films were investigated by Raman spectroscopy,
X-ray diffraction, electrical transport data, and UV-—vis
absorption spectroscopy, respectively. In all of these studies,
iodine was found to form charged linear chain complexes,
namely, (I;)~ and (I;)”. No neutral I, could be detected, clearly
indicating a transfer of electronic charge from the CNT lattice
to iodine. In the case of SWCNT mats and multiwalled CNTs
(MWCNTSs), doping was carried out by immersing samples in
molten iodine for prolonged periods of time. As for SWCNT-
based thin films, they were incubated with iodine vapors at
elevated temperature (320 K). In any case, electrical transport
was investigated via dc resistance measurements. To our
knowledge, no data exist for CNTFET doped by iodine in any
form. The model system described here represents a new
concept of effective chemical sensors in which a chemical
reaction between the analyte, iodine, and a mediator system,
multifunctional molecular material 1, amplifies the response of
a CNTFET through variations in its electronic environment.'*
The two pyrenyl units of 1 guarantee excellent attachment to
the SWCNT surface via z—7x stacking. This point was
confirmed by the clear modification of the SWCNT electronic
properties upon supramolecular functionalization with 1. Figure
2 shows the transfer characteristics of a CNTFET at Vpg = —1
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Figure 2. Typical CNTFET transfer characteristics at Vpg = =1 V
before (black) and after (red) incubation with molecular material 1 as
well as after exposure to iodine vapor (blue).

Vand V, in the range between —10 and +10 V of the CNTFET
before and after incubation with 1, respectively (the complete
output and transfer characteristics can be found in the
Supporting Information). In the beginning, all transistors
show p-type behavior characteristics for CNTFETs working at
ambient conditions.> In the presence of 1, a shift of Vj, of 5.0
V to more positive gate voltages as well as an increase in the
ON state current by a factor of 1.54 is visible. The shift of the
Ipg—Vj characteristic shows that 1 acts as an electron acceptor
upon association with SWCNTSs, thereby altering the Fermi
level toward the valence band edge, which results in a lowered
barrier for hole conduction. The increase in lateral saturation
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current, on the other hand, can be attributed to the influence of
1 on the metal work function of the contacts and, therefore, the
Schottky barrier height through dipole interactions.”*® This
explanation is further confirmed by the fact that the inverse
subthreshold slope, S = dV,/d[log Ipg], increases upon
incubation of CNTFET devices with 1 from 1.85 to 2.83 V/
dec (after oxidation with iodine: 4.51 V/dec). Because of the
size of 1, though, this must not be interpreted as diffusion into
the contact region between the palladium electrodes and the
SWCNT. 1 does also not act as a source of scattering for charge
carriers inside the channel as this would lead to a decrease of
the lateral current.

The hysteresis occurring in all measurement data is caused by
mobile charges present in defect sites of the silicon dioxide
substrate. While its width differs between different devices, the
hysteresis is not affected significantly by any of the applied
doping procedures when comparing data of the same device.

The effects of 1 on the transfer characteristics of CNTFET
devices are interesting in terms of the functional moieties
present in this material: Despite the TTF group, reputed as a
donor unit, the overall molecular structure obviously is capable
of serving as an electron acceptor for SWCNTs. After iodine
exposure, both effects on the transistor transfer characteristic
described above are increased again: A stronger p-shift is
evidence for the expected decrease in electron density
throughout the delocalized 7 system upon oxidation. The
increase in (hole) conductivity may partly stem from the
oxidized form of 1 itself, as has been reported for thin films of
this material,”’” but since the OFF current is not increased, the
majority of charge transport must still take place in the
CNTEFET.

We calculated the field-effect mobility pig for holes from the
data of the forward sweep in Figure 2, using a classical approach
where the SWCNT is treated as a metallic cylinder (Figure S3,

Supporting Information)®”®
L* dlpg
L e ——
VpsC dVy (1)

with L being the device channel length (L = 250 nm) and C the
capacitance of the channel with respect to the back gate. The
latter is obtained by’

&oL

C= —°
In(2 + 4t,,/d)

2re

avg
)

Here, e(avg) = 2.4S is the average of the dielectric constant
above — air £(Air) = 1.0 — and below — &(SiO,) = 3.9 — the
nanotubes, ¢t is the oxide thickness (t,, = 100 nm), and d is the
diameter of the SWCNT (d = 1.2 nm). C then takes on a value
of C =586 x 10" F.

We notice an increase in mobility after adsorption of 1 from
about 9 to 11 ecm?/(V s). The oxidation further increases the
mobility to about 13 cm?/(V s) (see the Supporting
Information).

To get a more detailed picture of the nature of interaction
between 1 and an SWCNT, we estimated the number of
adsorbed molecules N from the charge contribution, combining
experimental and theoretical results. On the experimental side,
the total charge AQ induced by 1 can be calculated from the
shift in the threshold voltage: after adsorption of 1, AVy, = 5.0
V, and after oxidation with iodine further, AVy, = 6.0 V (the
total shift is 11.0 V), between the respective measurements
AQ = CAV,. We obtain values of 2.93 X 107" C for the
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comparison of the cases before and after incubation with 1, and
3.52 X 107" C for the comparison of the cases after incubation
and after iodine exposure (the total charge transfer is 6.45 X
107" C). AQ then allows us to estimate the increase in hole
density per unit length Ap inside the SWCNT that results from
the charge-transfer interaction with 1:

_AQ  CAV

A
P el el

©)

After incubation, an additional density of 0.732 nm™ is
found, and after oxidation by iodine, a further increase of hole
density Ap of 0.878 nm™" is measured (the total hole density is
1.609 nm™'). In comparison, density functional calculations
show that 0.266 and 0.989 electrons are detracted from the
nanotube by one molecule before and after oxidation,
respectively (further simulation data can be found in the
Supporting Information). Thus, a reasonable agreement with
the experiment is found.

To obtain an approximate visualization of the supramolecular
organization of 1 on the SWCNT, we carried out semiempirical
calculations (PM3/vdW). As a model system, we utilized a
(5,5) SWCNT of about 4 nm in length and three molecules of
1. The geometry-optimized structure shows 1 with the pyrene
units embracing the nanotube in a pincer-like fashion, with the
TTF units forming stacks with S—S distances between 4.3 and
5.6 A. Most of the amide groups are engaged in intermolecular
hydrogen bonds, and the alkyl chains are establishing van der
Waals interactions (Figure 1B). All of these observations are in
agreement with the expected behavior for 1, and the data
reported previously.”® These simulations on the assembly of 1
on the CNT surface show that supramolecular assembly is
possible and mediated by 7—7 stacking of the pyrene moieties.
The pyrene—pyrene distance between two adjacent moieties
adsorbed on the surface of the nanotube amounts to roughly 8
A. Together with the charge-transfer considerations, we can
state that the entire nanotube is covered by molecules of 1.

We can clearly rule out the possibility that iodine itself is the
cause of this charge-transfer phenomenon by data obtained
from control devices where CNTFET's were directly exposed to
iodine vapors without the presence of 1. A representative
control experiment is shown in Figure 3. One can clearly
distinguish between the effect of iodine on functionalized and
nonfunctionalized devices: in the latter case, a weak p-shift and
no increase in conductivity are observed. Also, the simulations
show a charge transfer of only 0.074 electrons per molecule.

The results of the simulations show also that the adsorption
of 1 and iodine on the nanotubes is of an electrostatic nature.

1

Current lps / A

Gate voltage V,/ V

Figure 3. CNTFET transfer characteristic at Vpg = —1 V of bare
devices before (black) and after (red) iodine exposure.
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The minimal distance between the nanotube and 1 is
comparatively large with 2.99 and 4.49 A. Additionally, the
electron density in between the entities is negligible, as can be
seen in Figure SS (Supporting Information).

The results of vis-NIR absorption spectroscopy of SWCNTSs
in solution support the explanation of the transport measure-
ment data with charge transfer. A strong decrease of the S;;
feature occurs in the spectrum of the sample incubated with 1
(Figure S6, Supporting Information), an effect that is known in
the literature for derivatives of pyrene.*®

In conclusion, we investigated the effect of supramolecular
material issued from the association between 1 and an
SWCNT. The influence of 1 on the electronic behavior of
the nanotube was measured on the single SWCNT level in a
CNTEET device configuration before and after association by
recording transfer and output characteristics. A shift of the
threshold voltage to more positive values in devices function-
alized with 1 indicates transfer of electron density from the
SWCNT (resulting in a shift of the Fermi level toward the
valence band edge) to the organic compound. NIR absorption
spectra of SWCNTs associated with 1 in solution support this
finding. An increase in conductivity in functionalized
CNTFETs, on the other hand, may be the result of an
influence of 1 on the band alignment at the SWCNT—metal
interface through dipole interactions. Upon exposure of
functionalized devices to iodine vapors, both effects on the
transfer characteristics become even more pronounced. Data
obtained from control experiments in which nonfunctionalized
CNTEET's were exposed to iodine showed a similar trend, but
an overall much weaker response. The work presented here
serves as a model system for chemical sensors in which signal
amplification occurs through a mediator system that interacts
with a SWCNT electronically. The key elements of our system
are, first, a recognition element for the carbon nanotubes, to
ensure supramolecular attachment, in our case, pyrene, and,
second, a molecular fragment responsive to the presence of the
analyte, in our case, TTF, sensitive to oxidation by iodine. In
principle, the system is extremely flexible, as one could design a
broad variety of different molecular constructs so long as these
two key elements are conserved. For instance, other plausible
recognition motifs for SWNTs include porphyrins,* phthalo-
cyanines,*' perylenebisimides,* or 7-extended derivatives of
TTF.®* In this manner, these specifically tailored mediator
compounds could enable the monitoring of certain analytes, for
example, in pollution control in environmental protection.
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Experimental details, supporting figures, and full computational
details. This material is available free of charge via the Internet
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