
HAL Id: hal-03350660
https://univ-angers.hal.science/hal-03350660

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Prenexing Strategy for Quantified Boolean
Formulae with Bi-Implications

Benoit da Mota, Igor Stéphan, Pascal Nicolas

To cite this version:
Benoit da Mota, Igor Stéphan, Pascal Nicolas. A New Prenexing Strategy for Quantified Boolean
Formulae with Bi-Implications. Sixth International Workshop on Constraints in Formal Verification,
CFV 2009, 2009, Grenoble, France. �hal-03350660�

https://univ-angers.hal.science/hal-03350660
https://hal.archives-ouvertes.fr

A New Prenexing Strategy for Quanti�ed

Boolean Formulae with Bi-Implications

Benoit Da Mota, Igor Stéphan, and Pascal Nicolas

LERIA University of Angers, France
email: {damota, stephan, pn}@info.univ-angers.fr

Abstract. Most of the recent and e�cient decision procedures for quan-
ti�ed Boolean formulae accept formulae in negation normal form as input
or in an even more restrictive format such conjunctive normal form. But
real problems are rarely expressed in such forms. For instance, in spec-
i�cation, intermediate propositional symbols are used to capture local
results with always the same pattern. So, in order to use most of the
state-of-the-art solvers the original formula has �rstly to be converted in
prenex form. A drawback of this preliminary step is to destroy completely
the original structures of the formula. Furthermore, during the prenexing
process, bi-implications are translated in such a way that there is a du-
plication of their sub-formulae including the quanti�ers. In general, this
process leads to an exponential growth of the formula. In this work, we
focus on this very common pattern of intermediate result. We introduce
new logical equivalences allowing us to extract these sub-formulae in a
way that can improve the performance of the state-of-the-art quanti�ed
Boolean solvers.

1 Introduction

The quanti�ed Boolean formula (QBF) validity problem is a generalization of the
Boolean formulae satis�ability problem. While the complexity of Boolean satis-
�ability problem is NP-complete, it is PSPACE-complete for the QBF validity
problem. This is the price for a more concise representation of many classes of
formulae. Many important problems in several research �elds have polynomial-
time translations to the QBF validity problem: AI planning [17, 2], Bounded
Model Construction [2], Formal Veri�cation (see [6] for a survey).

Most of the recent and e�cient decision procedures for QBF have formu-
lae in negation normal form (NNF) as input or even more restrictive format
such as formulae in conjunctive normal form (CNF). But problems are rarely
expressed in such a form which destroyed completely their original structures.
It is much more natural to use the full expressivity of the QBF language: all
the usual connectors (including implication, bi-implication and xor) and quan-
ti�ers nested in the formula. Then translation schemas are required in order to
use available QBF solvers. The NNF translation needs for QBF, as for �rst or-
der logic, �ve steps: (i) replacement of the bi-implication and xor connectors by
their de�nitions with implications, negations, conjunctions and/or disjunctions;

(ii) renaming of propositional symbols such that distinct quanti�ers bind occur-
rences of distinct propositional symbols; (iii) extraction of the quanti�ers; (iv)
replacement of the implications by their de�nitions with negations, conjunctions
and/or disjunctions; (v) application of the DeMorgan's laws. The CNF trans-
lation adds one more step to the NNF translation. This latter translation has
been largely studied [16, 10, 11] since this normal form is used as input of most
of the decision procedure for the SAT problem. The three �rst steps of the above
translation form the so-called prenexing translation. There is not a unique prenex
QBF associated with a QBF and according to the chosen prenexing strategy, the
computation time of the decision process is highly in�uenced [12]. As far as we
know, there is no study for QBF about the extraction of quanti�ers nested in
the bi-implications. It is an important issue since the usual elimination of bi-
implications duplicates the nested quanti�ers leading to an exponential growth
of their numbers and the size of the formula.

The article is organized as follows: In Section 2, we present some preliminar-
ies about propositional logic and quanti�ed Boolean formulae. In Section 3, we
analyse the links between prenexing and bi-implications, propose a methodol-
ogy to extract the very common pattern of intermediate results and present one
theoretical example and one practical example in order to evaluate our method-
ology. In Section 4, we report some experimental results for our methodology on
our examples for state-of-the-art quan�tifed Boolean solvers. In Section 5, we
conclude and draw some perspectives.

2 Preliminaries

2.1 Propositional logic.

The set of propositional symbols is denoted by PS. Symbols ⊥ and > are the
propositional constants. Symbol ∧ stands for conjunction, ∨ for disjunction, ¬
for negation, → for implication, ↔ for bi-implication and ⊕ for xor. A literal is
a propositional symbol or the negation of a propositional symbol. De�nitions of
the language of propositional formula PROP and semantics of all the Boolean
symbols are de�ned in standard way. A formula is in negation normal form (NNF)
if it is only constituted of conjunctions, disjunctions and literals. A formula is in
conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals. A
substitution is a function from propositional symbols to PROP. This de�nition
is extended as usual to a function from PROP to PROP: [x ← F](G) is
the formula obtained from G by replacing each occurrence of the propositional
symbol x by the formula F . This de�nition is also extended as usual for the
substitution of a formula by another formula. A valuation v is a function from
PS to {true, false} ; the extension to PROP is denoted v∗. Propositional
satisfaction is denoted |= (v |= F means v∗(F) = true, the propositional formula
F is satis�ed by v and v is a model of F). Logical equivalence is denoted ≡.

2.2 Quanti�ed Boolean Formulae.

The symbol ∃ stands for the existential quanti�er and ∀ stands for the universal
quanti�er (q stands for any quanti�er). The set QBF of quanti�ed Boolean
formulae is de�ned inductively as follows: if F is inPROP then it is also inQBF;
if F is in QBF and x is a propositional symbol then (∃x F) and (∀x F) are also
inQBF; if F is inQBF then ¬F is also inQBF; if F and G are inQBF and ◦ is
in {∧,∨,→,↔,⊕} then (F ◦G) is in QBF. The set of propositional symbols of a
formula F is denoted PS(F). If a propositional symbol x is not under the scope
of a quanti�er (as in qx), then it is a free propositional symbol. The set of free
propositional symbols of a QBF F is denoted FPS(F). A QBF is closed if its
set of free propositional symbols is empty. A binder is a string q1x1 . . . qnxn with
x1, . . . , xn distinct propositional symbols and q1 . . . qn quanti�ers. The empty
string is denoted by ε. A QBF is in prenex form if it is constituted of a binder and
a propositional formula called the matrix. A QBF is in conjunctive normal form if
it is a prenex QBF and its matrix is in conjunctive normal form. The de�nition of
substitution is extended to QBF as follows: [x← F](G) is the formula obtained
fromG by replacing free occurrences of the propositional symbol x by the formula
F . The semantics of QBF is de�ned as follows: for every propositional symbol y
and every QBF F

(∃y F) ≡ ([y ← >](F) ∨ [y ← ⊥](F))

and
(∀y F) ≡ ([y ← >](F) ∧ [y ← ⊥](F)).

A QBF F is valid if F ≡ >. The Boolean satis�ability (SAT) of an unquanti�ed
Boolean formula corresponds exactly to the decision problem of the validity of
its existential closure. The complexity of the QBF validity problem is PSPACE-
complete while it is NP-complete for the SAT problem.

3 Prenexing and bi-implications

3.1 Motivations

In [12] are de�ned strategies for prenexing according to an order over the ex-
traction of quanti�ers. Some experiments have shown the high in�uence of this
extraction order on the computation time for QBF solvers. However, there exists
no rule for the extraction of quanti�ers involved in a bi-implication (or xor). As
pointed out in the introduction, the prenexing is decomposed in three steps that
we detail more hereafter.

(i) The replacement of the bi-implication and xor connectors by their de�nitions
with implications, negations, conjunctions and/or disjunctions is usually re-
alized by the two following equivalences:

1) (A↔ B) ≡ ((A→ B) ∧ (B → A)) 2) (A⊕B) ≡ ((A ∨B) ∧ ¬(A ∧B))

One can remark that the two QBF A and B are duplicated.

(ii) The renaming of propositional symbols such that distinct quanti�ers bind
occurrences of distinct propositional symbols may be done before the extrac-
tion of quanti�ers but may also be interleaved with this step.

(iii) The extraction of quanti�ers is usually based on the following classical �rst
order equivalences which still hold for QBF (F , G and H are QBF and x is
a propositional symbol such that x 6∈ FPS(H))

3) (∃x ¬F) ≡ ¬(∀x F)
5) (∀x F) ≡ F , if x 6∈ FPS(F)
7) (∀x (F ∧H)) ≡ ((∀x F) ∧H)
9) (∃x (F ∧H)) ≡ ((∃x F) ∧H)
11) (∀x (F ∧G)) ≡ ((∀x F)∧ (∀x G))
13) (∀x (F → H)) ≡ ((∃x F)→ H)
15) (∀x (H → G)) ≡ (H → (∀x G))

4) (∀x ¬F) ≡ ¬(∃x F)
6) (∃x F) ≡ F , if x 6∈ FPS(F)
8) (∀x (F ∨H)) ≡ ((∀x F) ∨H)
10) (∃x (F ∨H)) ≡ ((∃x F) ∨H)
12) (∃x (F ∨G)) ≡ ((∃x F)∨ (∃x G))
14) (∃x (F → H)) ≡ ((∀x F)→ H)
16) (∃x (H → G)) ≡ (H → (∃x G))

Equivalences 13 to 16 for implication are easily deduced from equivalences 3
to 12. The extraction of quanti�ers is a process which applies these equivalences
from right to left until a �x-point corresponding to a prenex QBF is obtained.
Prenexing preserves validity but does not guarantee the preservation of the size
of the QBF nor the associated search space. Let us remark that the expressivity
of the bi-implication connector exceeds the simple equivalence between (A↔ B)
and ((A→ B)∧(B → A)): a propositional symbol associated to a quanti�er in A
or B is duplicated following the equivalences 1 and 13 to 16 in two propositional
symbols: one associated to a universal quanti�er and another associated to an
existential quanti�er, and so whatever is the original quanti�er. If this has no
impact w.r.t. the validity, it is not the case w.r.t. the computation process. We
show in the following examples that the increase of the size of the formula is not
the only one problem with prenexing, even with simple QBF.

Let a be a propositional symbol, φ, φ1 and φ2 three QBF such that φ =
(φ1 ↔ (∃a φ2)) and a 6∈ FPS(φ1). By equivalence 1, the bi-implication is

eliminated: φ
1≡ ((φ1 → (∃a φ2)) ∧ ((∃a φ2) → φ1)). Formulae φ1 and φ2

have been duplicated. Then the quanti�ers are extracted from the implications:

φ
16,13≡ ((∃a (φ1 → φ2)) ∧ (∀a (φ2 → φ1))). Now, one occurrence of the proposi-

tional symbol a associated to a quanti�er has to be renamed in order to extract
the quanti�ers from the conjunction. Let b be this new renaming propositional

symbol and φ′2 = [a← b](φ2) then: φ
9,7≡ (∃a (∀b ((φ1 → φ2)∧ (φ′2 → φ1)))). The

order of extraction of quanti�ers may be reversed to obtain: φ
7,9≡ (∀a (∃b ((φ1 →

φ2)∧ (φ′2 → φ1)))). In the general case, if F is a QBF, (∀y (∃x F)) is not equiv-
alent to (∃x (∀y F)). The possibility to permute these two quanti�ers in this
special case is a useful information which could be used by solvers which is not
the case as far as we know. Moreover, propositional symbols a and b come from
the same propositional symbol of the non prenex QBF but nothing in the prenex
QBF keeps this information.

To conclude this motivation section, we consider how a quanti�er has to be
extracted from a sequence of bi-implications. We show in the following example

that the choice of the position of the parenthesis can in�uence the size of the
result of the prenexing process. Let a be a propositional symbol φr, φl, φ1, φ2

and φ3 some QBF such that φl = ((φ1 ↔ φ2) ↔ (∃a φ3)), φr = (φ1 ↔ (φ2 ↔
(∃a φ3))) with a 6∈ FPS(φ1) and a 6∈ FPS(φ2) then φr ≡ φl by associativity of
the bi-implication. We compute a prenex form for φl:

φl
1≡ (((φ1 ↔ φ2)→ (∃a φ3)) ∧ ((∃a φ3)→ (φ1 ↔ φ2)))

φl
16,13,9,7≡ ∃a∀b(((φ1 ↔ φ2)→ φ3) ∧ ([a← b](φ3)→ (φ1 ↔ φ2)))

and then for φr:

φr
1≡ (φ1 ↔ ((φ2 → (∃a φ3)) ∧ ((∃a φ3)→ φ2)))

φr
1≡ ((φ1 → ((φ2 → (∃a φ3)) ∧ ((∃a φ3)→ φ2)))∧

(((φ2 → (∃a φ3)) ∧ ((∃a φ3)→ φ2))→ φ1))
φr

13,14,15,16,9,7≡ ∃a∃c∀b∀d ((φ1 → ((φ2 → φ3) ∧ ([a← b](φ3)→ φ2)))∧
(((φ2 → [a← d](φ3)) ∧ ([a← c](φ3)→ φ2))→ φ1))

Formulae φl and φr, although equivalent, have di�erent numbers of propo-
sitional symbols and di�erent sizes after prenexing. If we consider the formula
(φ1 ↔ (φ2 ↔ . . . (φn ↔ (∃a φn+1)))), then 2n propositional symbols are gener-
ated whose half of them are universally quanti�ed. Formulae φn and φn+1 are
recopied 2n times, formula φn−1 is recopied 2n−1 times, and so on until φ1 which
is recopied two times. The size of the formula and the number of propositional
symbols grow exponentially w.r.t. the number of crossed bi-implication. Any
way, if every φk has a quanti�er to extract, the worst case cannot be avoided.

3.2 Prenexing and intermediate results

Previous section shows how important is the issue of prenexing when quanti�ers
occur in the scope of bi-implications. Since (A⊕B) ≡ ¬(A↔ B) ≡ (¬A↔ B),
in what follows we only focus on bi-implication. This issue is, as far as we know,
usually skipped in the process translating the speci�ed problem in QBF to the
equivalent CNF QBF given as input to a QBF solver. In this section, we focus on
two very frequent cases which occur in the programming or specifying process:
the declaration of intermediate results and the declaration of domain. The �rst
case is based on the introduction of an existentially quanti�ed propositional
symbol in association with a conjunction in order to improve the readability
of the speci�cation or to capture the results of a calculus duplicated in many
places. For QBF, by extension of a classical result of [18], we are interested in the
pattern (∃x ((x ↔ F) ∧ G)), x being an intermediate propositional symbol not
occurring in F ; it is easily proven from the semantics of the existential quanti�er
that this pattern is equivalent to [x ← F](G). The latter case is based on the
introduction of a universally quanti�ed propositional symbol in association with
an implication in order to express the domain of the propositional symbol (ie:
a property to be veri�ed by the symbol). In both cases, we call (x ↔ F) the
de�nition of x. The following result shows that these two techniques are actually
the same.

Theorem 1. Let F and G be two QBF and x a propositional symbol which
represents an intermediate result F , with x 6∈ FPS(F), then the following equiv-
alence holds:

(∃x ((x↔ F) ∧G)) ≡ (∀x ((x↔ F)→ G)).

The previous theorem is based on the following (propositional) equivalence:

((¬A ∨B) ∧ (A ∨ C) ∧ (B ∨ C)) ≡ ((¬A ∨B) ∧ (A ∨ C)).

By the previous theorem, we focus only on the existential pattern.
Since solvers usually have as input CNF QBF, the special status of the in-

termediate propositional symbols is completely lost and they are managed as
the other propositional symbols of the problem. There is a simple way to get rid
of these intermediate propositional symbols: we can simply apply the already
shown equivalence (∃x ((x ↔ F) ∧ G)) ≡ [x ← F](G) but it can lead to an
exponential growth of the size of the formula. Instead, we propose to extract
these propositional symbols thanks to the following theorem.

Theorem 2. Let F , G and H be three QBF and x be a propositional symbol
which represents the intermediate result F , with x 6∈ FPS(H), x 6∈ FPS(F)
then

(H ↔ (∃x ((x↔ F) ∧G))) ≡ (∃x ((x↔ F) ∧ (H ↔ G))).

The Algorithm 1 realizes the recursive application of this theorem by calling
the three functions described below.

Function 1 def_search

In: A QBF F
In: A set of propositional symbols Sps

Out: A set of de�nitions
switch F do

case (∃x G)
return def_search(G, Sps ∪ {x})
case (G ∧H)
return def_search(G, Sps) ∪ def_search(H, Sps)
case (x↔ G)
if x ∈ Sps then

return {(x↔ G)}
else

return ∅
end if

default

return ∅
end switch

Let (φH ↔ φ) be a QBF, the def_search algorithm of Function 1 searches for
all de�nitions matching (∃x ((x↔ F)∧G)) in φ with the constraint x 6∈ FPS(F)

relaxed. In fact the pattern can be embedded in an alternation of similar patterns
thanks to equivalences 9 and (∃x (∃y F)) ≡ (∃y (∃x F)) and associativity and
commutativity of conjunction. For instance

def_search((φ1∧(∃a (∃b ((a↔ φa)∧((b↔ φb)∧φ2))))), ∅) = {(a↔ φa), (b↔ φb)}.

In what follows, Sdef denotes a set of de�nitions as {(a ↔ φa), (b ↔ φb)} for
instance .

Function 2 def_extract

In: A set of de�nitions Sdef

In: A set of propositional symbols Sps

Out: A list of de�nitions
Ld := nil
while there exists (e↔ d) ∈ Sdef such that FPS(d) ⊆ Sps do

Sdef := Sdef without all the de�nitions on e
Sps := Sps ∪ {e}
Ld := ·((e↔ d), Ld)
end while

return Ld

The def_extract algorithm of Function 2 applies the constraint x 6∈ FPS(F)
on the set of de�nitions obtained from the def_search algorithm thanks to a
topological sort which extracts a list of de�nitions. Not all the de�nitions of
the set are inserted in the list: for instance if a ∈ FPS(φb), b ∈ FPS(φa)
and Sps is a set of propositional symbols such that a 6∈ Sps nor b 6∈ Sps then
def_extract(Sdef , Sps) = nil otherwise if a 6∈ FPS(φb) but b ∈ FPS(φa) then
def_extract(Sdef , Sps) = ·((b↔ φb), ·((a↔ φa), nil)) since

(φ1 ∧ (∃a (∃b ((a↔ φa) ∧ ((b↔ φb) ∧ φ2)))))
≡ (∃b ((b↔ φb) ∧ (∃a ((a↔ φa) ∧ (φ1 ∧ φ2)))))

The def_applying algorithm of Function 3 actually applies Theorem 2 in
two steps on the QBF φ for the list of de�nitions extracted by the def_extract
algorithm. Firstly, the de�nitions are replaced by > in the QBF since the de�-
nitions are conjunctively connected and are reintroduced at the top of the QBF:
for instance (φ1 ∧ (∃a (∃b ((a↔ φa) ∧ ((b↔ φb) ∧ φ2))))) is replaced by

((b↔ φb) ∧ ((a↔ φa) ∧ (φ1 ∧ (∃a (∃b (> ∧ (> ∧ φ2)))))))
≡ ((b↔ φb) ∧ ((a↔ φa) ∧ (φ1 ∧ (∃a (∃b φ2))))).

Secondly, the existential quanti�ers for the propositional symbols of the list
of de�nitions are eliminated from the formula and reintroduced above it: for
instance ((b↔ φb) ∧ ((a↔ φa) ∧ (φ1 ∧ (∃a (∃b φ2))))) is replaced by

(∃b (∃a ((b↔ φb) ∧ ((a↔ φa) ∧ (φ1 ∧ φ2)))))
≡ (∃b ((b↔ φb) ∧ (∃a ((a↔ φa) ∧ (φ1 ∧ φ2))))).

Function 3 def_applying

In: A QBF F
In: A list of de�nitions Ld

Out: A QBF
A list of de�nitions Lsave := Ld

while not empty(Ld) do
(e↔ d) := head(Ld)
F := ((e↔ d) ∧ [(e↔ d)← >](F))
Ld := tail(Ld)
end while

while not empty(Lsave) do
(e↔ d) := head(Lsave)
delete existential quanti�er on e from F
F := (∃e F)
Lsave := tail(Lsave)
end while

return F

Algorithm 1 rec_def_extraction

In: A QBF F
In: A set of propositional symbols Sps

Out: An equivalent QBF to F with its de�nitions extracted
switch F do

case (qx G)
return (qx rec_def_extraction(G, {x} ∪ Sps))
case ¬G
return ¬rec_def_extraction(G, Sps)
case (G ◦H) and ◦ ∈ {∧,∨,→}
return (rec_def_extraction(G, Sps) ◦ rec_def_extraction(H, Sps))
case (G↔ H)
A QBF G′ := rec_def_extraction(G, Sps)
A QBF H ′ := rec_def_extraction(H, Sps)
A list of de�nitions Ld := def_search(G′, ∅) ∪ def_search(H ′, ∅)
return def_applying((G′ ↔ H ′), def_extract(Ld, Sps))
default

return F
end switch

The rec_def_extraction algorithm of Algorithm 1 applies recusively the
extraction of the pattern on all possible de�nitions in an inside/out process. By
this way some de�nitions can cross many equivalences.

It is not di�cult to prove thanks to Theorem 2 the following correction
theorem.

Theorem 3. Let F be a QBF then rec_def_extraction(F, ∅) ≡ F .

3.3 Bi-implication chains with intermediate results

We de�ne a theoretical example in order to evaluate the impact of our methodol-
ogy as a chain of bi-implications thn = (ξ1 ↔ (ξ2 ↔ ...(ξn−1 ↔ (ξn)))) in which
each ξk contains an intermediate result as proposed in motivation section 3.1.
We have chosen some ξk of the form (∃xk((xk ↔ (c ∨ b)) ∧ (xk ∧ a))), with xk

the intermediate result and a, b and c propositional symbols which are in some
other links of the bi-implication chain. Formula thn, for n ≥ 4 is of the form:

thn = ∃e0...∃en−2∀u0∀u1∀u2

((∃xn((xn ↔ (en−4 ∨ en−3)) ∧ (xn ∧ en−2)))↔
((∃xn−1((xn−1 ↔ (en−5 ∨ en−4)) ∧ (xn−1 ∧ en−3)))↔
...
((∃x4((x4 ↔ (e0 ∨ e1)) ∧ (x4 ∧ e2)))↔
((∃x3((x3 ↔ (u2 ∨ e0)) ∧ (x3 ∧ e1)))↔
((∃x2((x2 ↔ (u1 ∨ u2)) ∧ (x2 ∧ e0)))↔
(∃x1((x1 ↔ (u0 ∨ u1)) ∧ (x1 ∧ u2))))))...))

For all n, thn is not valid.

The nesting of quanti�ers and bi-implications leads to an exponential explo-
sion of the size of thn in CNF w.r.t. n which is not the case with our methodology.
For instance, with n = 7, the CNF converted QBF has 1148 propositional sym-
bols (98 are universally quanti�ed) and 3038 clauses whereas the QBF obtained
by application of the rec_def_extraction algorithm and then converted into
CNF has only 33 propositional symbols (3 are universally quanti�ed) and 82
clauses. For n = 18, the CNF converted QBF has not been decided by any of the
state-of-the-art solvers in one hour whereas for n = 6000 the QBF obtained by
application of the rec_def_extraction algorithm and then converted into CNF
has been decided in less than one hour.

3.4 Hardware veri�cation: the n-bit ripple-carry adder

We also evaluate our methodology on a more simple (with only one bi-implication
crossed by some de�nitions) and classical example of hardware veri�cation: the n-
bit ripple-carry adder. We follow the approach of bounded model construction [1]
which is a method for generating models for a monadic formula by reducing its
satis�ability problem to a QBF validity problem [3, 2]. The example is about a
parametrized family of ripple-carry n-bits adders. For a given number n, one has
to verify the equivalence of the digital circuit with its speci�cation. Hereafter,
the QBF addimpl represents the implementation of the adder and addspec the
speci�cation, (n represents the size of the ripple-carry adder, A and B represent
n-bit input vectors, S represents the n-bit output and the Booleans ci and co are
the carry-in and carry-out respectively). By this way, the validity of the following
QBF addn ensures the correctness of the physical n-bit ripple-carry adder.

addn = ∀A∀B∀S∀ci∀co(addimpl(n,A,B, S, ci, co)↔ addspec(n,A,B, S, ci, co))

We give an example for the n-bit adder with n = 1: QBF

add1 = ∀A0∀B0∀S0∀ci∀co (addimpl(1, A0, B0, S0, ci, co)
↔ addspec(1, A0, B0, S0, ci, co))

with

addimpl(1, A0, B0, S0, ci, co) = [∃x1∃x2((D1(x1) ∧D2(x2)) ∧ (∃x3∃x4∃x5

(D3(x3) ∧ C1(x3, x1) ∧D4(x4)∧
D5(x5, x1, x3) ∧ C2(x2, x5, x4))))]

addspec(1, A0, B0, S0, ci, co) = [∃x6∃x7(D1(x6) ∧D2(x7) ∧ C3(x6, x7)
∧C4(x6))]

encodes the check of the adder for n = 1 with the following Boolean functions:

D1(x) = (ci ↔ x),
D2(x) = (co ↔ x),
D3(x) = (x↔ (A0 ⊕B0)),
D4(x) = (x↔ (A0 ∧B0)),
D5(x, y, z) = (x↔ (y ∧ z)),
C1(x, y) = (S0 ↔ (x⊕ y)),
C2(x, y, z) = (x↔ (y ∨ z)),
C3(x, y) = ((((A0 ∧B0) ∨ (A0 ∧ x)) ∨ (B0 ∧ x))↔ y),
C4(x) = (((A0 ↔ B0)↔ S0)↔ x).

Functions Ck, 1 ≤ k ≤ 4, represent the core of the implementation and spec-
i�cation of the n-bit ripple-carry adder. Formulae addimpl and addspec contain
instances of functions Dk, 1 ≤ k ≤ 5, which are de�nitions that we will extract.

The hereafter QBF add′1 is the initial QBF add1 translated by the classical
prenexing algorithm (propositional symbols yk come from the xk by recopy of the
two subformulae of the bi-implication). Universal quanti�ers are �rst extracted
from both parts of the bi-implication in order to minimize the alternation of
quanti�ers.

add′
1 = ∀A0∀B0∀S0∀ci∀co∀y1∀y2∀y3∀y4∀y5∀y6∀y7∃x1∃x2∃x3∃x4∃x5∃x6∃x7

[[(D1(y1) ∧D2(y2) ∧D3(y3) ∧ C1(y3, y1) ∧D4(y4) ∧D5(y5, y1, y3) ∧ C2(y2, y5, y4))
→ (D1(x6) ∧D2(x7) ∧ C3(x6, x7) ∧ C4(x6))]∧
[(D1(y6) ∧D2(y7) ∧ C3(y6, y7) ∧ C4(y6))
→ (D1(x1) ∧D2(x2) ∧D3(x3) ∧ C1(x3, x1) ∧D4(x4) ∧D5(x5, x1, x3) ∧ C2(x2, x5, x4))]]

The order of the quanti�ers highly in�uences the e�ciency of the solvers [12].
During the prenexing process of add1 into add′1, the order of the propositional
symbols is only constrained by the partial order induced by the fact that the
universal quanti�ers of the initial propositional symbols have to precede the
existential quanti�ers.

The hereafter QBF addt
1 is the initial QBF add1 translated by our algorithm

rec_def_extraction and then translated into a prenex form according to the
classical algorithm.

addt
1 = ∀A0∀B0∀S0∀ci∀co∃x1∃x2∃x3∃x4∃x5∃x6∃x7

[D1(x1) ∧D2(x2) ∧D3(x3) ∧D4(x4) ∧D5(x5, x1, x3) ∧D1(x6) ∧D2(x7)]∧
[[C1(x3, x1) ∧ C2(x2, x5, x4)]↔ [C3(x6, x7) ∧ C4(x6)]]

The obtained matrix of the QBF is composed of two parts: the de�nition of
the intermediate propositional symbols followed by the core of the equivalence
between the implementation and the speci�cation of the adder which uses these
intermediate propositional symbols.

4 Experimental Results

In order to evaluate the impact of our new methodology, we have developed
a Prolog program to generate instances of chains of bi-implications with inter-
mediate results thn as described in subsection 3.3 and instances of the n-bit
ripple-carry adder addn as described in subsection 3.4. The applied prenexing
process does not search for an optimal order of the quanti�ers. The order of the
de�nitions in the matrix has not been optimized either. The CNF conversion
is computed thanks to the introduction of intermediate existentially quanti�ed
propositional symbols. This CNF conversion only polynomially increases the size
of the QBF. The experiments have been realized on an Intel(R) Xeon(R) (2.83
GHz) with 4GB of memory. For our experiments we used the following QBF
solvers:

� sKizzo v0.8.2-beta [5] which is based on symbolic skolemization [4];
� Quantor 3.0 [7] which combines Q-resolution [15], to eliminate an innermost
existential quanti�er, and expansion, to eliminate an innermost universal
quanti�er;

� QuBE-BJ1.2 [14] which extends to QBF the Davis-Logemann-Loveland [9]
procedure with backjumping and two more recent versions, QuBE6.5 (resp.
QuBE6.1), which integrates (resp. does not integrate) as preprocessing the
Q-resolution [8];

� qpro [13] which is a decision procedure for non prenex QBF in negation
normal form (i.e. QBF only with conjunction, disjunction, literals and quan-
ti�ers) based on a sequent calculus for QBF, the GQBF calculus.

Experiments have been done �rstly with the default settings of the di�erent
solvers (in particular, sKizzo is set with the Q-resolution preprocessing).

4.1 Chains of bi-implications with intermediate results

Figures 1 and 2 report computation time in seconds for thn the chains of bi-
implications with or without our methodology and converted in prenex CNF for
sKizzo, QuBE 6.5 and Quantor and in non prenex NNF for qpro. Actually, the
size of the QBF converted in CNF or NNF grows exponentially with n.

Fig. 1. Computation time in seconds for thn the chains of bi-implications for QuBE 6.5
with and without intermediate results translated by rec_def_extraction algorithm
and converted in prenex CNF and for qpro with and without intermediate results
translated by rec_def_extraction algorithm and converted in non prenex NNF.

Fig. 2. Computation time in seconds for thn the chains of bi-implications with inter-
mediate results translated by rec_def_extraction algorithm and converted in prenex
CNF for sKizzo, QuBE 6.5 and Quantor and in non prenex NNF for qpro.

None of the tested QBF solvers has succeeded in deciding if thn is valid or not
for n > 17 without translation by our rec_def_extraction algorithm (QuBE6.5
succeeds in 2657 seconds for n = 15 but computation time exceeded the 3600
seconds for n = 16, Quantor succeeds in 0.1 second for n = 5 but computation
space exceeded the available memory space for n = 6, sKizzo succeeds in 31.9
seconds for n = 7 but computation space exceeded the available memory space
for n = 8, qpro succeeds in 1145.8 seconds for n = 17 but computation time
exceeded the 3600 seconds for n = 18). Due to the lack of space and since sKizzo
without our methodology failed to decide for n = 8 and succeeds to decide with
our methodology for n = 2000, we do not report more results about sKizzo with
or without our methodology. For the same reason, since Quantor failed to decide
for n = 5 and succeeds to decide with our methodology for n = 6000, we do not
report more results about Quantor with or without our methodology. Figure 1
reports the results for QuBE 6.5 and qpro with or without our methodology.
Computation time axis is in log scale. Figure 2 reports the results for the tested
QBF solvers on the QBF translated by our rec_def_extraction algorithm (and
then converted in prenex CNF for sKizzo, QuBE and Quantor and non prenex
NNF for qpro). The axes are both in log scale.

4.2 The n-bit ripple-carry adder

Results of the evaluation for the n-bit ripple-carry adder are summarized in
Table 1, computation times are in seconds, T (for �time out�) means that the
computation time exceeded 3600 seconds, M means that the computation space
exceeded the available memory space. These results show that the translated
QBF have almost always the best results. For all the solvers but sKizzo the results
are clear. For sKizzo, with n < 12 the improvement is substantial, but speedup
decreases for ripple-carry adder with larger size. The result of the translation
penalizes sKizzo on the largest instances: it may be observed thanks to the
trace that sKizzo, by the Q-resolution preprocessing, removes some intermediate
results (canceling part of our translation). Since QuBE6.5, which integrates a Q-
resolution preprocessing, has results worse than those obtained by QuBE-BJ1.2,
we think that Q-resolution has a great impact on this problem. In Table 1 are

sKizzo with sKizzo without QuBE

Q-resolution Q-resolution 6.5 6.1 BJ1.2 Quantor qpro

n without with without with with with with without with without with

4 0,1 0,1 0,2 0,1 0,7 1,3 0,1 5,3 0,1 1,3 1,5

5 0,2 0,1 0,2 0,1 6,7 79,5 1,1 75,2 0,2 21,2 17,3

6 0,4 0,1 1,3 0,1 61,4 T 9,8 T 1,8 335,9 186,1

7 1,0 0,1 1,3 0,1 561,0 T 83,8 M 11,1 T 1967,2

8 2,0 0,2 3,3 0,1 T T 714,5 M 106,0 T T

9 3,6 0,4 1,5 0,1 T T T M 2936,6 T T

10 7,5 1,6 3,2 0,1 T T T M M T T

11 32,0 6,7 5,4 0,1 T T T M M T T

12 14,1 11,9 4,8 0,1 T T T M M T T

13 13,6 16,1 3,6 0,2 T T T M M T T

14 16,3 15,6 5,3 0,3 T T T M M T T

15 19,6 21,9 4,7 0,3 T T T M M T T

16 33,5 29,3 6,5 0,3 T T T M M T T

17 22,6 15,0 17,0 0,4 T T T M M T T

18 19,3 14,4 14,0 0,5 T T T M M T T

19 32,4 26,8 23,4 0,5 T T T M M T T

20 82,5 21,7 28,9 0,4 T T T M M T T

21 46,6 20,7 26,1 1,0 T T T M M T T

22 35,7 27,9 19,6 1,0 T T T M M T T

23 37,7 14,0 294,9 0,8 T T T M M T T

Table 1. Computation time in seconds for the n-bit ripple-carry adder with intermedi-
ate results translated by rec_def_extraction algorithm and converted in prenex CNF
for sKizzo, QuBE and Quantor and in non prenex NNF for qpro.

also reported the experiments for sKizzo, but without Q-resolution, for which
we obtain the best results of our experiments. The improvement provided by our
new translation is very substantial.

5 Conclusion

In this work, we proposed di�erent logical equivalences allowing to deal with
intermediate results involved in bi-implications or xor inside a non prenex QBF.
One consequence of the use of these equivalences is to keep the size of the original
QBF, and its number of propositional symbols, during a prenexing process to
extract internal quanti�ers. It is also possible to choose the nature of the quan-
ti�er of the intermediate propositional symbol and then to reduce the number
of alternations of quanti�ers.

To evaluate the practical impact of our present work, we realized two kinds of
experiments. Firstly, we used an arti�cial example exhibited in our motivation
section to illustrate that in some cases the usual prenexing process leads to
a QBF with an exponential size. Our experimental results show that our new
prenexing strategy avoids this exponential growing of the prenex formula. So,
an immediate consequence of our contribution is that available QBF solvers are
now able to deal with such large QBF, when they were unable to solve very small
ones. Secondly, we chose a practical and realistic example: the formal veri�cation
of a digital circuit that has to conform to a given speci�cation. The results show
the positive impact of our new prenexing strategy. It is worth noting that if Q-
resolution is used by the solver then the e�ciency decreases. So, one interesting

topic of research may be to study if the e�ciency of Q-resolution can be restored
if it is not applied on intermediate results.

In our future works, we plan to extend our results to the general case of
quanti�ers involved in bi-implications or xor, and not only for intermediate re-
sults. Another improvement of our present work would be to compare di�erent
variants of our prenexing strategy since our experimental results show that the
nature of the chosen quanti�er may importantly in�uence the resolution time.
Moreover, having observed that procedures inside QBF solvers use, more and
more often, a structure of quanti�ers and a non prenex clausal form of QBF,
it would be interesting to work directly on the original (non prenex non CNF)
encoding of the problem to solve. So, we plan to study how to translate a non
prenex non CNF QBF in a non prenex CNF QBF, to sort the propositional sym-
bols in di�erent categories: problem propositional symbols, intermediate results
and propositional symbols only dedicated to the encoding. Then, we would be
able to exploit more information and to evaluate the impact of heuristics, like
Q-resolution, on these di�erent kinds of propositional symbols.

References

1. A. Ayari and D. Basin. Bounded model construction for monadic second-order
logics. In Proocedings of the 12th International Conference on Computer-Aided
Veri�cation (CAV'00), pages 99�113, 2000.

2. A. Ayari and D. Basin. Qubos: Deciding Quanti�ed Boolean Logic using Proposi-
tional Satis�ability Solvers. In Proceedings of the 4th International Conference on
Formal Methods in Computer-Aided Design (FMCAD'02), 2002.

3. A. Ayari, D. Basin, and S. Friedrich. Structural and behavioral modeling with
monadic logics. In The Twenty-Ninth IEEE International Symposium on Multiple-
Valued Logic, pages 142�151, 1999.

4. M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In Proceedings of the
11th International Conference on Logic for Programming, Arti�cial Intelligence,
and Reasoning (LPAR'05), number 3452 in LNCS, pages 285�300. Springer, 2005.

5. M. Benedetti. skizzo: a suite to evaluate and certify QBFs. In Proceedings of the
20th International Conference on Automated Deduction (CADE'05), pages 369�
376, 2005.

6. M. Benedetti and H. Mangassarian. Experience and Perspectives in QBF-Based
Formal Veri�cation. Journal on Satis�ability, Boolean Modeling and Computation,
2008 (to appear).

7. A. Biere. Resolve and Expand. In 7th Intl. Conf. on Theory and Applications of
Satis�ability Testing (SAT'04), 2004.

8. U. Bubeck and H. Kleine Büning. Bounded Universal Expansion for Preprocess-
ing QBF. In Proceedings of the Tenth International Confrerence on Theory and
Applications of Satis�ability Testing (SAT'07), pages 244�257, 2007.

9. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communication of the ACM, 5, 1962.

10. T. Boy de la Tour. An Optimality Result for Clause Form Translation. Journal
of Symbolic Computation, 14(4):283�302, 1992.

11. U. Egly. On Di�erent Structure-Preserving Translations to Normal Form. Journal
of Symbolic Computation, 22(2):121�142, 1996.

12. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Di�erent
Prenexing Strategies for Quanti�ed Boolean Formulas. In SAT, pages 214�228,
2003.

13. U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex Form. Con-
straints, 14(1):38�79, 2009.

14. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE++: an e�cient QBF solver.
In Formal Methods in Computer-Aided Design, 2004.

15. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quanti�ed boolean
formulas. Information and Computation, 117(1):12�18, 1995.

16. D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Transla-
tion. Journal of Symbolic Computation, 2(3):293�304, 1986.

17. J. Rintanen. Constructing conditional plans by a theorem-prover. Journal of
Arti�cial Intelligence Research, 10:323�352, 1999.

18. G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic,
Part 2, pages 115�125. Consultants Bureau, New York, 1970.

