Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Bayesian estimation in accelerated life testing

Abstract :

A common problem of high-reliability computing is, on the one hand, the magnitude of total testing time required, particularly in the case of high-reliability components; and, on the other hand, the number of devices under testing. In both cases, the objective is to minimise the costs involved in testing without reducing the quality of the data obtained. One solution is based on Accelerated Life Testing (ALT) techniques which permit decreasing the testing time. Another solution is to incorporate prior beliefs, engineering experience, or previous data into the testing framework. It is in this spirit that the use of a Bayesian approach can, in many cases, significantly reduce the number of devices required. This paper presents a study of the Arrhenius-Exponential model by an evaluation of parameters using Maximum Likelihood (ML) and Bayesian methods. A Monte Carlo simulation is performed to examine the asymptotic behaviour of these different estimators.

Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Okina Univ Angers Connectez-vous pour contacter le contributeur
Soumis le : lundi 15 novembre 2021 - 09:45:49
Dernière modification le : lundi 15 novembre 2021 - 09:45:51




Sorin Voiculescu, Fabrice Guérin, Mihaela Barreau, Abderafi Charki. Bayesian estimation in accelerated life testing. International Journal of Product Development, Inderscience, 2009, 7 (3-4), pp.246 - 260. ⟨10.1504/IJPD.2009.023321⟩. ⟨hal-03428235⟩



Consultations de la notice