Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Multiscale Entropy Analysis of Short Signals: The Robustness of Fuzzy Entropy-Based Variants Compared to Full-Length Long Signals

Abstract : Multiscale entropy (MSE) analysis is a fundamental approach to access the complexity of a time series by estimating its information creation over a range of temporal scales. However, MSE may not be accurate or valid for short time series. This is why previous studies applied different kinds of algorithm derivations to short-term time series. However, no study has systematically analyzed and compared their reliabilities. This study compares the MSE algorithm variations adapted to short time series on both human and rat heart rate variability (HRV) time series using long-term MSE as reference. The most used variations of MSE are studied: composite MSE (CMSE), refined composite MSE (RCMSE), modified MSE (MMSE), and their fuzzy versions. We also analyze the errors in MSE estimations for a range of incorporated fuzzy exponents. The results show that fuzzy MSE versions—as a function of time series length—present minimal errors compared to the non-fuzzy algorithms. The traditional multiscale entropy algorithm with fuzzy counting (MFE) has similar accuracy to alternative algorithms with better computing performance. For the best accuracy, the findings suggest different fuzzy exponents according to the time series length.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03462890
Contributeur : Anne Humeau-Heurtier Connectez-vous pour contacter le contributeur
Soumis le : jeudi 2 décembre 2021 - 10:16:53
Dernière modification le : mercredi 30 mars 2022 - 23:58:01

Lien texte intégral

Identifiants

Collections

Citation

Airton Borin, Anne Humeau-Heurtier, Luiz Virgílio Silva, Luiz Murta. Multiscale Entropy Analysis of Short Signals: The Robustness of Fuzzy Entropy-Based Variants Compared to Full-Length Long Signals. Entropy, MDPI, 2021, 23 (12), pp.article id. 1620. ⟨10.3390/e23121620⟩. ⟨hal-03462890⟩

Partager

Métriques

Consultations de la notice

15