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Bernard Bercu, qui m’a lancé dans le monde de la recherche.
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nous quitter et que j’estimais profondément.

3



Activités de recherche

Cette section contient en particulier un récapitulatif de mes thématiques de recherche,
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C. Trabelsi, J. Clotault. Journal of Theoretical Biology. Vol. 462, pp 537-551, 2019.

[6] On the Bickel-Rosenblatt test of goodness-of-fit for the residuals of autoregressive processes.
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Introduction

Nous allons résumer dans ce mémoire les principaux travaux réalisés ces dernières
années, que l’on va répartir selon trois axes majeurs et quasiment indépendants qui for-
meront autant de chapitres. En somme, il a été décidé de mettre en avant cinq articles
récents dont le contenu explicite est fourni afin d’illustrer les chapitres en proportion
globale des travaux présentés, bien que d’autres articles soient également cités. Chaque
article donne lieu à un résumé qui n’a pas vocation à servir de recherche bibliographique
(nous renvoyons le lecteur au contenu détaillé pour cela), mais simplement de survol des
thématiques abordées et des résultats obtenus, afin de se faire en quelques lignes une idée
claire de ce qui a été produit. Nous concluons nos résumés par quelques perspectives, pour
replacer l’étude dans un contexte plus large et envisager des pistes de développements
ultérieurs qui nous semblent particulièrement intéressants. Précisons enfin que les no-
tations utilisées ne correspondent pas toujours à celles des articles en question, dans un
souci d’harmonisation du manuscrit. Les notations mathématiques quant à elles paraissent
suffisamment usuelles pour ne pas être systématiquement redéfinies.

Résumé des travaux de thèse

Il semble tout d’abord opportun de rappeler en quelques lignes le contenu de ma thèse
afin de situer précisément les travaux du Chapitre 1, qui sont en lien direct. Cette dernière
se proposait d’étudier le comportement asymptotique de différentes statistiques à la base
de tests de corrélation résiduelle et de stationnarité dans une modélisation autorégressive.
Rappelons qu’un processus AR(p) centré satisfait l’équation de récurrence

∀n ⩾ 1, Xn = θTΦn−1 + εn (1)

où θ = (θ1, . . . , θp)
T et Φn = (Xn, . . . , Xn−p+1)

T pour tout n ⩾ 0. Dans la définition
usuelle d’une modélisation AR(p), le processus (εn)n⩾ 1 est un bruit blanc, c’est-à-dire
une suite de v.a.r. décorrélées, d’espérance nulle et de variance finie σ2 > 0. De manière
condensée, l’écriture VARp(1) donnée par

∀n ⩾ 1, Φn = Cθ Φn−1 + En (2)

est équivalente à la précédente, pour un bruit p-vectoriel En = (εn, 0, . . . , 0)T et une
matrice compagnon donnée par

Cθ =




θ1 θ2 . . . θp
. . .

...
Ip−1 0

. . .
...


 . (3)
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Il est bien connu que la stabilité du processus p-vectoriel (Φn)n⩾ 0 dépend directement
des valeurs propres de Cθ,

ρ(Cθ) = |λ1| ⩾ |λ2| ⩾ . . . ⩾ |λp|. (4)

En particulier, selon (Duflo, 1997, Def. 2.3.17), on dira que le processus est stable lorsque
|λ1| < 1, qu’il est instable lorsque |λ1| = 1 (purement instable si de plus |λp| = 1), ou
encore qu’il est explosif lorsque |λp| > 1, sans même évoquer tous les cas mixtes qui en
découlent. Par ailleurs, puisque

∀λ ∈ C∗, det(Cθ − λ Ip) = (−λ)p θ(λ−1) où θ(z) = 1 − θ1z − . . .− θp z
p (5)

est le polynôme autorégressif du processus, il est clair que toute valeur propre de Cθ est
l’inverse d’une racine de θ, de sorte que la condition de stabilité |λ1| < 1 est équivalente
à l’hypothèse que le polynôme θ est causal, c’est-à-dire que toutes ses racines sont à
l’extérieur strict du disque unité D = {z ∈ C, |z| ⩽ 1}. Par la suite on pourra avoir
recours à la notation θ(B) pour alléger les écritures autorégressives, avec B l’opérateur
retard : ∀ t, BXt = Xt−1. Lorsque le processus est défini sur I ∪ N où I contient les
indices des valeurs initiales, stabilité et stationnarité (asymptotique) cöıncident sous des
hypothèses adéquates de moments.

Corrélation résiduelle

Sur une trajectoire observable (Φ0, X1, . . . , Xn), l’estimateur des moindres carrés de
θ s’exprime par

θ̂n =

(
n∑

t=1

Φt−1Φ
T
t−1

)−1 n∑

t=1

Φt−1Xt. (6)

Il est usuel d’ajouter une pénalisation de type ridge à la matrice de covariance, pour
s’exempter d’une hypothèse supplémentaire d’inversibilité, sans pour autant modifier les
propriétés asymptotiques de l’estimation. Ces dernière ont aussi été largement étudiées
dans la littérature, selon la nature de la perturbation (εn)n⩾ 1, le vecteur initial Φ0 et
les valeurs propres de Cθ. Par exemple dans le cas stable, puisque c’est celui qui nous
intéresse dans l’immédiat, avec un bruit blanc fort (i.i.d.) de variance σ2 > 0 comme
perturbation et Φ0 garantissant l’ergodicité et la stationnarité stricte du processus (de
même loi que Φn pour n ⩾ 1), l’estimation est fortement consistante et asymptotiquement
normale, voir par exemple Brockwell et Davis (2006). Sortant de ce cadre idéal, on pourra
relâcher les hypothèses sur le bruit et sur le vecteur initial au prix de quelques hypothèses
de moments supplémentaires. Comme indiqué précédemment, pour un Φ0 arbitraire sur
lequel on placera des propriétés de moments utiles à l’étude, le cas stable est assimilable
au cas asymptotiquement stationnaire. De même, on sait grâce à Lai et Wei (1983) et
Chan et Wei (1988) que la consistance forte et la normalité asymptotique restent vraies
lorsque (εn)n⩾ 1 est une différence de Fn-martingale ayant un moment d’ordre 2+ϵ (ϵ > 0),
où Fn = σ(Φ0, (εt, 1 ⩽ t ⩽ n)). La nature du bruit est une donnée primordiale dans la
manière d’aborder les démonstrations, et d’un point de vue pratique il est intéressant de
connâıtre en détail les conséquences inférentielles de l’introduction de corrélation dans la
perturbation. Précisément, le cas où (εn)n⩾ 1 se comporte comme un AR(1) est à l’origine
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du test de Durbin-Watson. En particulier, sous des conditions impliquant la stabilité dans
le modèle

∀n ⩾ 1,

{
Xn = θTΦn−1 + εn
εn = ρ εn−1 + Vn

(7)

où la perturbation (Vn)n⩾ 1 est un bruit blanc fort de moment d’ordre 4 fini, on montre
dans Pröıa (2013), et dans Bercu et Pröıa (2013) lorsque p = 1, qu’il existe une valeur
limite θ∗ (̸= θ) et une matrice Σθ définie positive telles que

lim
n→+∞

θ̂n = θ∗ p.s. et
√
n
(
θ̂n − θ∗

) D−→ N (0,Σθ). (8)

Cela signifie que l’estimation perd sa propriété de consistance lorsqu’il existe de la
corrélation dans le bruit. Dans un tel contexte, il est assez répandu en économétrie no-
tamment d’utiliser la statistique de Durbin-Watson, voir Durbin et Watson (1950, 1951,
1971), définie à l’aide des résidus issus de l’estimation de θ par

D̂n =

∑n
t=1

(
ε̂t − ε̂t−1

)2
∑n

t=1 ε̂
2
t

(9)

pour un test de corrélation résiduelle de H0 : “ρ = 0” contre H1 : “ρ ̸= 0”, ce que nos
travaux permettent de formaliser. Citons également Bitseki Penda et al. (2014), travail
dans lequel nous établissons pour p = 1 des principes de déviations modérées sous des
hypothèses spécifiques, parmi lesquels

lim
n→+∞

1

b2n
lnP

(√
n

bn

(
D̂n −D∗) ∈ H

)
= − inf

x∈H
ID(x) (10)

pour toute vitesse 1 ≪ bn ≪ √
n et tout H ∈ B(R) tel que l’infimum de ID sur H◦ et

celui sur H̄ cöıncident, ainsi qu’une valeur limite D∗ et une fonction de taux ID bien
identifiées. Certains auteurs comme Samoura (2017) ont par la suite étendu nos résultats
au cas où p ⩾ 1. Enfin, nous proposons dans Bercu et al. (2014) une version continue
du modèle avec pour motivation principale la similitude entre l’autorégression d’ordre 1
et le processus d’Ornstein-Uhlenbeck. Il est intéressant de constater que les estimateurs
convergent à la même vitesse mais que les valeurs limites sont différentes. Tous ces travaux
reposent essentiellement sur la théorie des martingales.

Stationnarité

Les procédures de Dickey-Fuller pour p = 1 et de Dickey-Fuller augmenté (ADF)
pour p ⩾ 1 sont couramment utilisées pour tester la présence d’une racine unitaire
dans la modélisation d’une trajectoire supposée AR(p). Ces dernières reposent sur un
test de significativité dans un modèle de régression bien particulier. En cas de rejet, on
pourra retenir la stationnarité de la série, éventuellement autour d’une tendance constante
ou linéaire. Afin de tester la stationnarité et donc d’obtenir une procédure statistique
complémentaire, Leybourne et McCabe (1994) introduisent une écriture AR(p) causale
modifiée que l’on peut résumer par

∀n ⩾ 1, θ(B)Xn = Tn + Sη
n + εn (11)
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où (Tn)n⩾ 1 est une tendance linéaire ou constante, (εn)n⩾ 1 est un bruit blanc de variance
σ2
ε > 0 et (Sη

n)n⩾ 0 est une marche aléatoire démarrant en Sη
0 = 0, engendrée par un bruit

blanc (ηn)n⩾ 1 de variance σ2
η ⩾ 0 et indépendant du précédent. Le test de Leybourne-

McCabe (LMC) se ramène alors au test de H0 : “σ2
η = 0 contre H1 : “σ2

η > 0. Sous
H0, S

η
n = 0 p.s. pour tout n et le processus est stationnaire autour de sa tendance.

Au contraire sous H1, la marche aléatoire rend le processus non-stationnaire. Le test
de Kwiatkowski, Phillips, Schmidt et Shin (KPSS) présenté dans Kwiatkowski et al.
(1992) repose sur les mêmes bases mais la partie autorégressive est remplacée par des
hypothèses de mélange sur le bruit (εn)n⩾ 1 et l’existence d’une variance de long terme.
Ces deux procédures possèdent un défaut crucial : elles ne prennent pas en compte les
racines unitaires négatives. On se propose dans Pröıa (2018) de revisiter le test LMC en
enrichissant le modèle (11) au niveau de la tendance et surtout au niveau des racines
unitaires, en introduisant la marche potentiellement alternée

∀n ⩾ 1, Sη
n =

n∑

t=1

ρn−t ηt (12)

avec ρ = ±1. On montre qu’il existe des processus limites, construits sur le processus de
Wiener, qui décrivent le comportement asymptotique de la statistique LMC correctement
renormalisée, selon que l’on se place sous H0 : “σ2

η = 0”, sous H+
1 : “σ2

η > 0 et ρ = 1”
ou sous H−

1 : “σ2
η > 0 et ρ = −1”. Cela nous donne accès à un test de stationnarité

dans un AR(p) avec tendance qui tient compte des racines unitaires ±1, et qui vient donc
généraliser et corriger le test LMC. Les principes d’invariance de type Donsker forment
l’outil essentiel conduisant aux résultats résumés dans cette section.

Dans la continuité de la thèse

Des travaux ont été réalisés dans la continuité de la thèse mais ne s’insérant pas dans
les trois axes retenus pour ce mémoire, c’est pourquoi on va se contenter ici de présenter
succinctement deux d’entre eux.

Corrélation résiduelle d’ordre quelconque

La statistique de Durbin-Watson (9) n’est adaptée qu’au test de corrélation résiduelle
du premier ordre : on a de l’information sur la covariance entre deux résidus consécutifs
mais rien d’autre. Or dans les autorégressions d’ordre quelconque, il ne parâıt pas per-
tinent de ramener la notion de bruit blanc à celle d’absence de corrélation du premier
ordre. Dans Pröıa (2018), on propose à cet égard de considérer le modèle

∀n ⩾ 1,

{
Xn = θTΦn−1 + εn
εn = ρTΨn−1 + Vn

(13)

où Φn = (Xn, . . . , Xn−p+1)
T et Ψn = (εn, . . . , εn−q+1)

T pour tout n ⩾ 0, et où la perturba-
tion (Vn)n⩾ 1 est un bruit blanc fort de moment d’ordre 4 fini. Les polynômes autorégressifs
associés à θ et ρ sont supposés causaux, garantissant ainsi la stabilité du processus. Dans
ce contexte, on établit le comportement asymptotique de l’estimateur des moindres carrés
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de θ, qui n’est évidemment pas consistant mais reste asymptotiquement normal et de vi-
tesse de convergence p.s. en (ln lnn/n)1/2 classiquement rencontrée dans l’estimation des
modèles linéaires stables. L’estimateur proposé pour ρ est donné par

ρ̂n =

(
n∑

t=1

Ψ̂t−1Ψ̂
T
t−1

)−1 n∑

t=1

Ψ̂q
t−1 ε̂t (14)

avec Ψ̂n = (ε̂n, . . . , ε̂n−q+1)
T pour tout n ⩾ 0, où les résidus sont issus de l’estimation

préalable de θ. De la même manière, on pourra ajouter une pénalisation de type ridge à
la matrice de covariance, pour s’assurer l’inversibilité sans hypothèse supplémentaire. Le
résultat principal de ce travail est que lorsque ρ = 0,

√
n ρ̂n

D−→ N (0,Σ0
ρ) (15)

avec une covariance asymptotique Σ0
ρ bien identifiée. Cela permet à travers une estima-

tion consistante de Σ0
ρ de construire un test de H0 : “ρ = 0” contre H1 : “ρ ̸= 0”. Tenant

compte de l’aspect autorégressif, la procédure obtenue est sans surprise bien plus puis-
sante que les tests communément appliqués afin de vérifier la blancheur des résidus d’une
autorégression à l’ordre quelconque. En outre, elle peut être utilisée afin de déterminer
l’ordre du modèle AR qui serait donc le plus petit ne conduisant pas au rejet de H0.
Tout comme les travaux sur la statistique de Durbin-Watson, la théorie asymptotique
des martingales est intensivement utilisée pour établir ces résultats.

Distribution des résidus

Les travaux fondateurs de Bickel et Rosenblatt (1973) ont permis d’établir le compor-
tement asymptotique de la statistique

T̂n = nhn

∫

R

(
f̂n(x) − f(x)

)2
a(x) dx (16)

où f̂n est l’estimateur de Parzen-Rosenblatt de la densité f d’un n-échantillon, (hn)n⩾ 1 est
une fenêtre, selon la terminologie usuelle de la statistique non-paramétrique, et a est une
fonction possédant certaines hypothèses de régularité. Il est ainsi possible d’en déduire
un test d’adéquation sur la distribution de la série, au sens de la distance dans L2. Par la
suite, certains auteurs ont montré que le résultat restait vrai sous des hypothèses moins
restrictives (bruits blancs, processus faiblement dépendants, etc.). Lee et Na (2002) et
plus tard Bachmann et Dette (2005) valident également le résultat lorsqu’il porte sur les
résidus d’un modèle autorégressif du premier ordre, à condition que ce dernier soit stable
ou explosif. Spécifiquement, nous identifions dans Lagnoux et al. (2019), en collaboration
avec A. Lagnoux et T.M.N. Nguyen, une moyenne µ et une variance asymptotique τ 2

telles que, pour les résidus d’un autorégressif d’ordre p ⩾ 1 stable ou explosif,

T̂n − µ√
hn

D−→ N (0, τ 2) (17)

sous des hypothèses techniques portant sur la densité f du bruit du processus, sur le noyau
K utilisé dans l’estimation non-paramétrique de f et sur la régularité de la fonction a.
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Nous montrons également que dans le cas instable pour p = 1, le résultat reste vrai
pour la racine unitaire négative alors que, pour la racine unitaire positive, la vitesse de
convergence de la statistique et son comportement asymptotique sont modifiés. Pour un
δ > 0 et une densité de référence f0 qui ne s’annule pas sur Iδ = [−δ, δ], posons

∆δ(f, f0) =

∫

Iδ

(
f(x) − f0(x)

)2

f0(x)
dx. (18)

Nous proposons alors un protocole statistique pour tester H0 : “∆δ(f, f0) = 0” contre
H1 : “∆δ(f, f0) > 0” qui met en concurrence l’hypothèse que f0 cöıncide avec f presque
partout sur Iδ contre l’alternative qu’il existe un intervalle non-vide de Iδ sur lequel f0
et f diffèrent. Ce dernier est valable pour les résidus d’autorégressions d’ordre p ⩾ 1
stables et explosives (et même sous quelques configurations instables), généralisant ainsi
et corrigeant à certains égards les travaux de Lee et Na (2002).

Nouveaux axes de recherche

Les travaux présentés dans les sections précédentes ont un fil directeur commun :
le diagnostic statistique des modèles autorégressifs (stationnarité, ordre p, blancheur
et distribution résiduelles, etc.). Depuis quelques années, j’ai développé mes activités
de recherche selon trois nouveaux axes quasiment orthogonaux, qui constitueront les
trois chapitres de ce mémoire. Alors que les deux premiers chapitres sont essentiellement
théoriques, le troisième est très appliqué voire uniquement méthodologique.

Axe 1 : autorégressifs à coefficients variables

Tout d’abord, dans la thématique autorégressive, la présence de racines unitaires a
longtemps été un enjeu majeur en économétrie des séries chronologiques et en statistique
des processus. En effet, comme on l’a rappelé dans la section introductive aux travaux
de thèse, le processus se comporte de façon radicalement différente selon la localisation
des valeurs propres de sa matrice compagnon Cθ. On sait par exemple que sous les hy-
pothèses adéquates, si le processus est stable, alors il est asymptotiquement stationnaire
et l’estimateur des moindres carrés converge à vitesse n−1/2 vers une loi normale. Au
contraire lorsqu’il est instable (avec une seule racine unitaire), il évolue comme une va-
riable aléatoire d’ordre de grandeur n1/2 et l’estimateur des moindres carrés converge à
vitesse n−1 vers une loi non-gaussienne et non-symétrique, et tout cela se fait à vitesse
exponentielle lorsqu’il est explosif. En résumé, il y a deux discontinuités très nettes dans
le comportement du processus (en termes de valeur de Xn ou d’estimation de θ) lorsque
ρ(Cθ) varie continument dans [1±ϵ], pour ϵ > 0. Ce changement brutal de comportement
a certes motivé les procédures de recherche de racines unitaires, mais il a aussi ouvert
la voie à une approche moins rigide dans laquelle les coefficients ne sont plus fixes. Un
modèle autorégressif à coefficients variables peut s’écrire

∀n ⩾ 1, Xn = θn, 1Xn−1 + . . .+ θn, pXn−p + εn (19)

où (εn)n⩾ 1 est un bruit blanc et (θn)n⩾ 1 est une suite de coefficients sur laquelle on
fera des hypothèses spécifiques. Dans une telle écriture le coefficient prend une valeur
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différente à chaque instant, mais on peut aussi envisager la forme triangulaire

∀n ⩾ 1, ∀ 1 ⩽ k ⩽ n, Xn, k = θn, 1Xn, k−1 + . . .+ θn, pXn, k−p + εk (20)

dans laquelle les coefficients sont fixes pour un n donné, mais le modèle AR(p) est revu
dans son intégralité à chaque nouvelle valeur de n. À titre d’exemple, lorsque p = 1 et
en supposant que |θn| < 1 mais que |θn| → 1 quand n → +∞, on ‘zoome’ en quelque
sorte sur la frontière intérieure du disque unité et l’on étudie de plus près la discontinuité
constatée entre |θ| < 1 et |θ| = 1. Phillips et Magdalinos (2007) montrent dans ce contexte
que dans un voisinage d’ordre O(n−α) de la racine unitaire avec 0 < α < 1, l’estimateur
converge à vitesse n(−1−α)/2 vers une loi normale. Même s’il reste des discontinuités dans
la distribution asymptotique sur les bords α → 0+ (où la variance asymptotique est
surestimée) et α → 1− (où la forme de la distribution limite est différente), un pont est
ainsi créé dans les vitesses de convergence entre la stabilité (α = 0) et l’instabilité (α = 1).
Dans un esprit de généralisation, la première partie du Chapitre 1 sera dédiée au modèle
(20) dans lequel nous établirons un principe de déviations modérées pour l’estimateur des
moindres carrés sous l’hypothèse que la matrice compagnon Cθn est telle que ρ(Cθn) < 1
mais que ρ(Cθn) → 1, classe de processus que nous avons qualifiés de quasi-instables,
prolongeant en ce sens les travaux de Miao et al. (2015) et permettant à terme (c’est
ce qui est espéré dans le cadre de nos travaux actuels) de remonter jusqu’au théorème
central limite et ainsi d’étendre les résultats de Phillips et Magdalinos (2007) au cadre
vectoriel. En parallèle, nous nous sommes intéressés en collaboration avec M. Soltane au
cas où les coefficients sont aléatoires, configuration du modèle largement mise en lumière
par Nicholls et Quinn (1981b,a), et nous avons choisi de remettre en question l’hypothèse
d’indépendance temporelle entre les coefficients, qui parâıt en effet peu réaliste dans
un cadre chronologique. Dans la seconde partie du Chapitre 1, nous développerons un
modèle similaire à (19) dans lequel les coefficients sont aléatoires et autocorrélés. Nous
montrerons en particulier que l’estimation par moindres carrés n’est plus consistante et
nous en donnerons le comportement asymptotique précis. Nous en tirerons également un
test de corrélation dans les coefficients aléatoires, lorsque p = 1.

Axe 2 : modèles graphiques partiels

Par ailleurs, nous avons travaillé avec E. Okome Obiang sur une problématique de
grande dimension et plus spécifiquement sur les modèles graphiques partiels gaussiens
(PGGM), ramification des modèles graphiques que nous développerons en détail le mo-
ment venu. Considérons un modèle linéaire à réponses multivariées de la forme

Y = XB + E (21)

où Y ∈ Rn×q contient les réponses, X ∈ Rn×p contient les prédicteurs, B ∈ Rp×q est une
matrice de coefficients et E ∈ Rn×q est un bruit multivarié. L’estimation de B est un
problème bien connu et largement étudié, que l’on se place en petite dimension vis-à-
vis des prédicteurs ou en grande dimension (p ≫ n) avec éventuellement structures de
groupes, voir par exemple (Giraud, 2014, Chap. 6). Pour le k-ème individu, on a donc
Yk = BTXk+Ek et dans le cas gaussien, on supposera de plus que Ek ∼ Nq(0, R). Lorsque
le vecteur des observations (Yk, Xk) ∈ Rq+p est lui-même supposé suivre une distribution
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Nq+p(0,Σ) dont la matrice de précision Ω = Σ−1 est définie positive et se décompose en
blocs

Ω =

(
Ωy ∆
∆T Ωx

)
(22)

où Ωy ∈ S q
++, ∆ ∈ Rq×p et Ωx ∈ S p

++, on déduit des propriétés des vecteurs gaussiens que
Yk |Xk ∼ Nq(−Ω−1

y ∆Xk, Ω−1
y ). On voit ainsi se dessiner la reparamétrisation

B = −∆T Ω−1
y et R = Ω−1

y (23)

dans le modèle (21). Cependant, l’estimation de ∆ est particulièrement intéressante du
point de vue de l’interprétation car on sait grâce à la théorie des modèles graphiques
qu’à un facteur multiplicatif près, l’élément (i, j) de ∆ contient la corrélation partielle
entre la i-ème réponse et le j-ème prédicteur, information que l’on ne peut généralement
pas tirer directement de B. En grande dimension, l’estimation des matrices de précision
gaussiennes est une problématique abondamment traitée dans la littérature récente, citons
simplement dans cette introduction le célèbre Graphical Lasso de Friedman et al. (2008).
Mais extraire ∆ de Ω engendre une difficulté majeure lorsque p est grand, car la forte
pénalisation nécessaire à l’estimation de la matrice induit un biais conséquent : on estime
trop de paramètres, (q + p)(q + p+ 1)/2 = O(p2), par rapport à ce dont on a réellement
besoin, q(q + p) = O(p). Dans un modèle graphique partiel, on va chercher à n’estimer
que ce qui est utile à B, à savoir le couple (Ωy,∆). Dans ce contexte, une approche par
vraisemblance pénalisée est proposée par Yuan et Zhang (2014) munie d’une garantie
théorique, et enrichie à certains égards par Chiquet et al. (2017) qui y adjoignent une
pénalisation structurante susceptible d’imposer des motifs dans ∆. À titre d’exemple,
cela peut être particulièrement utile lorsque les prédicteurs possèdent une structure de
dépendance temporelle et que l’on émet le souhait que la sélection de variables aboutisse
à des segments de prédicteurs plutôt qu’à des prédicteurs isolés. Dans la première partie
du Chapitre 2, nous mettrons en commun les deux études précitées afin de réfléchir à
un algorithme d’estimation de (Ωy,∆) par maximum de vraisemblance pénalisée dans
un modèle structurant, accompagné d’une garantie théorique similaire à celle de Yuan et
Zhang (2014). Nous verrons en particulier que la présence d’une pénalisation structurante
ne change pas l’ordre de grandeur de l’erreur d’estimation mais restreint le domaine de
validité des paramètres de régularisation pour que cet ordre de grandeur soit respecté.
La seconde partie du Chapitre 2 sera dédiée à la contrepartie bayésienne du modèle
graphique partiel, qui à notre connaissance n’avait jamais encore été développée. Nous
nous appuierons sur l’approche de Liquet et al. (2017), traitant l’estimation bayésienne de
B dans le modèle (21), pour proposer une estimation bayésienne de (Ωy,∆) avec différents
types de sparsité (en coordonnées et/ou en groupes) dans ∆, par une stratégie spike-and-
slab. Nous présenterons quelques résultats issus des échantillonneurs de Gibbs qui ont
été mis en place afin d’estimer la densité jointe qui découle des modèles hiérarchiques et
d’obtenir des estimations a posteriori potentiellement génératrices de sparsité dans ∆.

Axe 3 : applications aux sciences du vivant

Enfin, nous présenterons pour conclure deux études menées afin de répondre à des be-
soins en analyse des données et modélisation de l’Institut de Recherche en Horticulture et
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Semences (IRHS), unité mixte de recherche INRAE basée à Angers. Toutes deux traitent
de populations de rosiers : la première se focalise sur un aspect phénotypique (courbes
de floraison) et la seconde sur un aspect génotypique (reconstruction de généalogies).
Dans la première partie du Chapitre 3, nous mettons en place des mélanges gaussiens
afin de modéliser les courbes de floraison des rosiers sur l’année (mesurées en densité de
fleurs sur la plante au cours du temps). Nous en tirons des indicateurs permettant un
clustering de la population et des profils caractéristiques de floraison dans chaque groupe.
Contrairement à la première, la seconde étude n’est pas une analyse statistique mais une
construction probabiliste de graphes. À partir de marqueurs génétiques sur les individus
et d’autres informations de nature descriptive (comme la date d’obtention de la plante
ou sa plöıdie), on cherche à reconstruire rétrospectivement un arbre généalogique de la
population sur le modèle de Chaumont et al. (2017) mais dans un contexte plus général.
En effet, le monde végétal est à l’origine de nombreuses difficultés dans cette étude : les
individus de la population sont di-, tri- ou tétraplöıdes (les chromosomes vont par 2, 3,
ou 4), ce qui engendre des schémas de reproduction bien plus compliqués que le schéma
standard {a, b} × {c, d} 7→ {ac, ad, bc, bd} muni de la probabilité uniforme. Par ailleurs,
certaines données génotypiques ne sont pas connues avec certitude en présence de tri-
ou tétraplöıdie. Tenant compte de cela, on proposera dans la seconde partie du Chapitre
3 un travail en collaboration avec C. Trabelsi axé sur un algorithme de reconstruction
généalogique permettant de mettre en évidence l’arbre de maximum de vraisemblance,
une estimation de la loi de reproduction des individus de la population et donc des indi-
vidus atypiques (probablement favorisés par les sélectionneurs) ou encore une tentative
d’identification des châınons manquants (nœuds de l’arbre disparus de l’étude).
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Chapitre 1

Autorégressifs à coefficients variables

Comme nous l’avons mentionné dans l’introduction, ce chapitre est dévolu aux pro-
cessus autorégressifs à coefficients variables. Nous traiterons tout d’abord des proces-
sus quasi-instables, avant d’évoquer dans un second temps les processus à coefficients
aléatoires. Nous donnons le contenu explicite de deux articles, un par section, et nous
renvoyons à l’introduction (en particulier le résumé des travaux de thèse) pour une
présentation générale du contexte autorégressif (estimation, stabilité, etc.).

1.1 Processus quasi-instables

Nous présentons dans cette section le contenu de l’article Pröıa (2020), publié dans
Journal of Statistical Planning and Inference et dont l’objectif est l’établissement d’un
principe de déviations modérées (PDM) sur l’erreur d’estimation dans une classe de pro-
cessus autorégressifs quasi-instables. Nous voyons cela comme un premier pas avant de
remonter jusqu’au théorème central limite.

Résumé

Soit le processus autorégressif d’ordre p ⩾ 1 à coefficients variables donné par

∀n ⩾ 1, ∀ 1 ⩽ k ⩽ n, Φn, k = An Φn, k−1 + Ek (1.1)

où Ek = (εk, 0, . . . , 0)T est un bruit blanc fort p-vectoriel, où Φn, k = (Xn, k, . . . , Xn, k−p+1)
T

avec comme valeur initiale Φn,0, et avec An comme matrice compagnon (telle que définie
dans l’introduction). Pour une série chronologique de taille n ⩾ 1, l’estimateur des
moindres carrés de θn est donné par

θ̂n = S −1
n−1

n∑

k=1

Φn, k−1Xn, k avec Sn−1 =
n∑

k=1

Φn, k−1 ΦT
n, k−1 (1.2)

quitte à ajouter un petit élément diagonal pour s’assurer de l’inversibilité de Sn−1. La
principale hypothèse émise sur les coefficients est que ∀n ⩾ 1, ρ(An) < 1 mais que
ρ(An) → 1. Ainsi le processus est stable mais asymptotiquement instable, le rayon spectral
de sa matrice compagnon se situe dans un voisinage de la frontière intérieure du disque
unité. Lorsque An = A dans le cas stable où ρ(A) < 1, (Worms, 1999, Thm. 3) a montré
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que la suite formée par l’erreur d’estimation correctement renormalisée satisfaisait un
principe de grandes déviations (PGD). Le résultat principal de notre étude est qu’il en va
de même dans le cas quasi-instable sous quelques hypothèses techniques, en particulier le
fait que la convergence de ρ(An) vers 1 ne doit se faire au mieux qu’à vitesse polynomiale.
Explicitement, on construit une classe de vitesses (bn)n⩾ 1 et une fonction Iθ : Rp → R̄+

telles que ( √
n

bn
√

1 − ρ(An)

(
θ̂n − θn

)
)

n⩾ 1

(1.3)

satisfait un PGD de vitesse (b 2n)n⩾ 1 et de taux Iθ, à condition que la matrice de covariance
asymptotique correctement renormalisée soit inversible. Dans le cas contraire, on montre
un résultat similaire pour une estimation pénalisée (de type ridge). On prolonge ainsi
les travaux de Miao et al. (2015), dédiés au cas p = 1. Une analyse fine de la matrice
An est faite, en particulier on construit sa diagonalisation (pour n suffisamment grand)
à l’aide d’une matrice de passage de Vandermonde et son inverse, dont les coefficients
sont reliés aux polynômes d’interpolation de Lagrange. Cela permet en particulier de
montrer que ces matrices sont bornées (pour une quelconque norme), argument décisif
dans le fait que la croissance de ∥An∥ se rattache à celle de ρ(An) et que l’on puisse faire
apparâıtre directement ρ(An) dans la vitesse des déviations modérées. Par la suite, les
techniques de preuves utilisées reposent essentiellement sur les séries (mn)-dépendantes
(avec mn → +∞) et sur le théorème de Gärtner-Ellis (Dembo et Zeitouni, 1998, Sec.
2.3). L’article est fourni en fin de section.

Perspectives

Cette étude couvre l’essentiel de la problématique du PDM pour l’erreur d’estimation
dans un modèle quasi-instable (au sens que nous avons donné à cet adjectif), mais n’en
couvre pas non plus l’intégralité. En particulier, nos démonstrations font apparâıtre des
difficultés lorsqu’il existe des racines unitaires de multiplicité supérieure à deux dans le
processus asymptotique ou, de manière équivalente, lorsqu’il existe au moins deux valeurs
propres de A, limite de An, égales et de module 1, et tout laisse à penser que la vitesse des
déviations doit évoluer dans ce cas. En soi c’est un comportement attendu car, comme on
l’a rappelé en introduction, on sait depuis Chan et Wei (1988) que le nombre de racines
unitaires joue sur la vitesse de convergence de l’estimation. Cette extension devrait être
possible sans grandes complications, par contre établir un PGD pour l’erreur d’estimation
se révèlerait un problème bien plus compliqué, d’autant qu’à notre connaissance il n’est
pas entièrement établi dans le cas stable où ρ(An) = ρ(A) < 1, ce qui révèle clairement la
difficulté d’une telle l’étude. Peut-être de manière plus naturelle, nos résultats permettent
d’établir la consistance faible de l’estimation, c’est-à-dire que

∥∥θ̂n − θn
∥∥ P−→ 0 (1.4)

mais pas la consistance forte. Les techniques de preuve de Lai et Wei (1983) qui montrent
la convergence p.s. dans les cas stable et instable devraient nous permettre de l’établir
dans notre contexte intermédiaire, mais la piste reste à creuser. Enfin, on a vu que lorsque
p = 1, Phillips et Magdalinos (2007) montrent que dans un voisinage d’ordre O(n−α) de
la racine unitaire avec 0 < α < 1, l’estimateur converge à vitesse n(−1−α)/2 vers une
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loi normale. Par analogie, on peut conjecturer que la suite (1.3) est asymptotiquement
normale lorsque bn = 1, c’est un travail qui justement est en cours (en collaboration avec
M. Badreau). En particulier, il semble qu’il existe une variance Σ telle que

√
n√

1 − ρ(An)

(
θ̂n − θn

) D−→ Np(0,Σ) (1.5)

et nous cherchons à la caractériser par des techniques de martingales. Buchmann et
Chan (2013) proposent une théorie unifiée dans un contexte plus large, cependant la
quasi-instabilité y est introduite à travers une perturbation de la jordanisation de la
matrice compagnon, et donc pas de la même manière que dans notre travail. C’est un fil
qu’il pourrait être intéressant de suivre également, car on trouve dans cette référence les
distributions asymptotiques de l’estimation sous ces hypothèses peu faciles à manipuler.
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MODERATE DEVIATIONS IN A CLASS OF STABLE BUT NEARLY
UNSTABLE PROCESSES

FRÉDÉRIC PROÏA

Abstract. We consider a stable but nearly unstable autoregressive process of any order.
The bridge between stability and instability is expressed by a time-varying companion matrix
An with spectral radius ρ(An) < 1 satisfying ρ(An)→ 1. In that framework, we establish a
moderate deviation principle for the empirical covariance only relying on the elements of An

through 1−ρ(An) and, as a by-product, we establish a moderate deviation principle for the
OLS estimator when Γ, the renormalized asymptotic variance of the process, is invertible.
Finally, when Γ is singular, we also provide a compromise in the form of a moderate deviation
principle for a penalized version of the estimator. Our proofs essentially rely on truncations
and deviations of mn–dependent sequences, with an unbounded rate (mn).

1. Introduction and Assumptions

Unit root issues have long been crucial in time series econometrics and have therefore
focused a great deal of research studies. This sudden demarcation between stability and
instability is responsible for many inference problems in linear time series (see Brockwell and
Davis [4] for a detailed overview of the linear stochastic processes). The remarkable works of
Chan and Wei [7] encompass, in a much more general context, the now well-known fact that
the least squares estimator is

√
n–consistent with Gaussian behavior when the underlying

autoregressive process is stable, whereas it is n–consistent with asymmetrical distribution
when the process is unstable. This rather abrupt change in the rate of convergence and in the
asymptotic distribution certainly motivated the wide range of unit root testing procedures,
but it also paved the way for studies based on time-varying coefficients. In a nearly unstable
autoregressive process, we do not focus on a parameter θ satisfying |θ| < 1 or |θ| = 1 but,
instead, the parameter is considered as a sequence (θn) such that |θn| < 1 and |θn| → 1 as
n → +∞. This sample size dependent structure allows a continuity between stability and
instability. For example, Phillips and Magdalinos [20] treat the case where the coefficient
is in a O(κ−1

n ) neighborhood of the unit root with κn = nα = o(n). Amongst other results,
they prove a central limit theorem for the estimator at the rate

√
nκn, thereby making a

bridge between the stable rate
√
n and the unstable rate n. In the same vein, let us also

mention the work of Chan and Wei [6], natural generalizations like the study of Phillips and
Lee [19] related to vector autoregressions, or the recent unified theory of Buchmann and
Chan [5], focused on nearly unstable autoregressive processes. Our paper is precisely based
on the latter topic, in a sense that will be precised in good time.

Given a parametric generating process, the precision of the estimation is usually assessed
by its rate of convergence and the deviations can be seen as a natural continuation after
a central limit theorem or even a law of iterated logarithm. Roughly speaking, they may

Key words and phrases. Nearly unstable autoregressive process, Moderate deviation principle, OLS esti-
mation, Asymptotic behavior, Unit root.
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be used to estimate the exponential decline of the probability of tail events related to the
distance between the estimator and the parameter of interest. We refer to Dembo and
Zeitouni [8] regarding the mathematical formalization. Since the 1980s, numerous authors
have worked on large and/or moderate deviations in a time series context under many and
varied hypotheses. Without claiming to be exhaustive, one can mention the studies of
Donsker and Varadhan [10] and Bercu et al. [2] on stationary Gaussian processes and
quadratic forms, the paper of Worms [21] on Markov chains and regression models and the
one of Bercu [1] on first-order Gaussian stable, unstable and explosive processes. One can
also mention the works of Mas and Menneteau [15] on Hilbertian processes, Djellout et al. [9]
on non-linear functionals of moving average processes, Wu and Zhao [22] on stationary non-
linear processes, Miao and Shen [16] on general autoregressive processes or, more recently,
Bitseki Penda et al. [3] on first-order processes with correlated errors. All the references
inside may complete this concise list.

In this paper, we investigate the moderate deviations of the estimate in stable but nearly
unstable autoregressions. This can be seen as a full generalization of the recent work of
Miao, Wang and Yang [17], focused on the univariate case. Our proofs essentially rely on
truncations and deviations of mn–dependent sequences where the rate (mn) is unbounded.
The main technical contributions are twofold. On the one hand, expressing the nearly
instability directly through the sequence of spectral radii of the companion matrix seems,
to the best of our knowledge, a new approach having many advantages. For example the
authors of the recent paper [5] introduce a perturbation in the Jordan canonical form of the
model (see Thm. 2.1) which is a powerful idea to deal with the subject of their study, but
somehow unnecessarily complex for ours. On the other hand, from a purely technical point
of view, unbounded truncations have already been used to get moderate deviations (see e.g.
[18] and [17]), but we will see that the vector case treated here and the specific features of
the model cannot be adapted as easily to the existing tools. As a consequence, we need to
redevelop a full Gärtner-Ellis reasoning to establish the deviations of our unbounded vector
truncations. This quite general strategy might inspire future similar studies.

For a fixed n > 1, let the process be given for some p > 1 and k ∈ {1, . . . , n} by

Xn, k =

p∑

i=1

θn, iXn, k−i + εk

where (εk)k is a sequence of zero-mean i.i.d. random variables. In an equivalent way, we can
consider the vector expression

(1.1) Φn, k = An Φn, k−1 + Ek

where Ek = (εk, 0, . . . , 0)T is a p–vectorial noise, Φn, k = (Xn, k, . . . , Xn, k−p+1)T and

(1.2) An =

(
θn, 1 θn, 2 . . . θn, p

Ip−1 0

)

is the p × p companion matrix of the autoregressive process. If (Ek)k has a finite variance,
it is well-known that (Φk, n)k is a second-order stationary process having the causal form

(1.3) Φn, k =
+∞∑

`=0

A`nEk−`

2
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when ρ(An) < 1, that is, when the largest modulus of its eigenvalues is less than 1 (see e.g.
Thm. 11.3.1 of [4] and the fact that each eigenvalue of An is the inverse of a zero of the
autoregressive polynomial of the process). Since (εk)k is an i.i.d. sequence, the process is
strictly stationary with mean zero and variance given by

(1.4) Γn = σ2

+∞∑

`=0

A`nKp (AT
n )`

where, for convenience, we will denote in the whole study

(1.5) Kp =

(
1 0
0 0p−1

)
and Up =

(
1
0

)

the p× p matrix with 1 at the top left and 0 elsewhere, and its first column standing for the
first vector of the canonical basis of Rp. As a consequence of the causal expression above,
the initial vector Φn, 0 is not arbitrary and has to share the distribution of the process. This
also implies the relation

(1.6) Γn = An ΓnA
T
n + σ2Kp.

As will be largely developped throughout the study, Γn is finite for all n > 1 but, as n
increases, |||Γn||| → +∞. The keystone matrix Γ obtained after a correct standardization
of Γn is the renormalized asymptotic variance of the process. Before we start, we define a
matrix that will also prove to be crucial to our results,

(1.7) Bn = Ip2 − An ⊗ An.
We are now going to introduce and comment the hypotheses that will be needed, though
not always simultaneously, in the whole paper. Section 2 is devoted to our main results :
two statements related to the moderate deviations of the empirical covariance and the OLS
estimator, a set of explicit examples and some additional comments and conclusions. Finally,
in Section 3 divided into numerous subsections, we will prove all our results, step by step.

Remark. We denote by ‖·‖ the Euclidean vector norm and by |||·||| the spectral matrix norm.
Other norms may be used, in which case an appropriated subscript is added. Moreover, we
will always denote by 〈·, ·〉 the usual inner product of the Euclidean space Rd for any d > 1.
We write M † for the Moore-Penrose pseudo-inverse of any matrix M (see e.g. Sec. 0.3 of
[12]).

1.1. Hypotheses. First of all, we present the hypotheses that we retain.

(H1) Gaussian integrability condition. There exists α > 0 such that

E
[
eα ε

2
1
]
< +∞

where ε1 represents the zero-mean i.i.d. sequence (εk)k of variance σ2 > 0 and fourth-
order moment τ 4 > 0.

(H2) Convergence of the companion matrix. There exists a p× p matrix A such that

lim
n→+∞

An = A

with distinct eigenvalues 0 < |λp| 6 . . . 6 |λ1| = ρ(A), and the top right element of
A is non-zero.

3
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(H3) Spectral radius of the companion matrix. For all n > 1, ρ(An) < 1. In addition,

lim
n→+∞

ρ(An) = ρ(A) = 1.

(H4) Renormalization. We have the convergences

lim
n→+∞

B−1
n

|||B−1
n |||∗

= H and lim
n→+∞

(1− ρ(An)) |||B−1
n |||∗ = h

for some matrix norm, where H is a p2 × p2 non-zero matrix and h > 0.
(H5) Moderate deviations. The moderate deviations scale (bn) satisfies

lim
n→+∞

bn = +∞ and lim
n→+∞

√
n (1− ρ(An))

3
2

+η

bn
= +∞

for a small η > 0.

1.2. Comments on the hypotheses. First, assuming in (H2) that the limiting matrix has
distinct eigenvalues is a matter of simplication of the reasonings. Indeed, An turns out to
be diagonalizable for a sufficiently large n, and, as a companion matrix, it is well-known
that the change of basis is done via a Vandermonde matrix having numerous nice properties
(more details are given in Section 3.1, and a discussion on the case of multiple eigenvalues
is provided in Section 2.3). The top right element of An is θn, p. So, assuming in (H2) that
θn, p 9 0 ensures that the limit process is still of order p and that 0 cannot be an eigenvalue
of A, since det(A) = (−1)p+1 θp. Moreover, note that, in (H4), the invertibility of Bn for all
n is guaranteed by (H3). Indeed, ρ(An ⊗ An) = ρ2(An) < 1 (see e.g. Lem. 5.6.10 and Cor.
5.6.16 of [13]). In addition, we obviously have, for all ` > 0,

ρ(A`n) = ρ`(An) 6 |||A`n|||
so that we get

(1.8)
1

1− ρ(An)
6

+∞∑

`=0

|||A`n||| = Ln

giving a lower bound for Ln. Similarly,

(1.9)
1

(1− ρ(An))2
6

+∞∑

`=0

(`+ 1) |||A`n||| = Mn.

However, an exact upper bound for these sums may be difficult to reach and may require
stringent conditions on the elements of An. We refer the reader to Lemma 3.1 where, under
(H2) and (H3), some asymptotic upper bounds are established. We also refer to Section 2.2
where the explicit calculations in terms of some examples shall help to understand the rates
involved in the hypotheses. Now for a fixed n > 1, let

µn = ρ(An) +
1− ρ(An)

2
=
ρ(An) + 1

2
.

Clearly, ρ(An) < µn < 1. Hence, according to Prop. 2.3.15 of [11], for all n > 0, there exists
a constant cn > 0 such that, for all ` > 0, |||A`n||| 6 cn µ

`
n so that

Ln 6
cn

1− µn
< +∞ and Mn 6

cn
(1− µn)2

< +∞.
4
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Letting n tend to infinity, it follows from (H3) and (H4) that

(1.10) lim
n→+∞

|||B−1
n ||| = lim

n→+∞
Ln = lim

n→+∞
Mn = +∞.

Finally, it will be established in good time that there is a limiting matrix Γ such that

(1.11) lim
n→+∞

Γn
|||B−1

n |||∗
= Γ

where ||| · |||∗ is the matrix norm of (H4).

Remark. To facilitate the reading, we consider from now on that the matrix norm ||| · |||∗ is
identified in (H4), and we will only note ||| · ||| in what follows.

2. Main results

This section contains two statements that constitute the main results of the paper. The
first of them is quite long to establish and will need numerous technical lemmas, but the
second one will essentially be deduced as a corollary of the first one. Subsequently, we
provide some explicit examples for a better understanding and an easier interpretation of
the hypotheses together with some graphics showing the evolution of the processes and the
estimation of the autoregressive parameter. At the end of the section, we discuss the case of
multiple eigenvalues. But, first, let us recall the definition of the large and moderate deviation
principles (see Sec. 1.2 of [8] for more details). In what follows, a speed is considered as a
positive sequence increasing to infinity.

Definition. A sequence of random variables (Un)n on a topological space (X ,B) satisfies a
large deviation principle (LDP) with speed (an) and rate I if there is a lower semicontinuous
mapping I : X → R̄+ such that :

• for any closed set F ∈ B,

lim sup
n→+∞

1

an
lnP(Un ∈ F ) 6 − inf

x∈F
I(x),

• for any open set G ∈ B,

− inf
x∈G

I(x) 6 lim inf
n→+∞

1

an
lnP(Un ∈ G).

In particular, if the infimum of I coincides on the interior H◦ and the closure H̄ of some
H ∈ B, then

lim
n→+∞

1

an
lnP(Un ∈ H) = − inf

x∈H
I(x).

Definition. A sequence of random variables (Vn)n on a topological space (X ,B) satisfies a
moderate deviation principle (MDP) with speed (b 2

n) and rate I if there is a speed (vn) with
vn
bn
→ +∞ such that (vn

bn
Vn)n satisfies a large deviation principle of speed (b 2

n) and rate I.
5
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2.1. Moderate deviations. We now consider an observable trajectory Xn,−p+1, . . . , Xn, n

for some fixed n > 1, and use it to provide an estimation of the parameter. It is well-known
that the ordinary least squares (OLS) estimator of θn = (θn, 1, . . . , θn, p)

T is given by

(2.1) θ̂n = S −1
n−1

n∑

k=1

Φn, k−1Xn, k where Sn−1 =
n∑

k=1

Φn, k−1 ΦT
n, k−1.

The first result is dedicated to the empirical variance Sn
n

.

Theorem 2.1. Under hypotheses (H1)–(H5), the sequence
(√

n (1− ρ(An))
3
2

bn
vec

(
1

n

n∑

k=1

(Φn, k ΦT
n, k − Γn)

))

n> 1

satisfies an LDP with speed (b 2
n) and a rate function IΓ : Rp2 → R̄+ defined as

IΓ(x) =

{
1

2h3
〈x,Υ † x〉 for x ∈ Im(Υ)

+∞ otherwise

where Υ is explicitely given in (3.18) and h comes from (H4).

Proof. See Section 3.2.5. �

Remark. Through vectorization, this MDP is established on Rp2 in order to avoid any con-
fusion in the notations, but we might work in Rp×p as well. The associated rate function
would only require a slight modification of the proof.

Remark. To be punctilious, we may add a small ε > 0 to the diagonal of Sn−1 to ensure that
it is non-sigular for all n > 1 without disturbing the asymptotic behavior.

When the variance Γ given in (1.11) is invertible, we establish the MDP for the OLS
in the theorem that follows. However, when it is not the case, there are some technical
complications and, to reach an intermediate result, we need to introduce a penalized version
of the OLS. For a small π > 0, define

(2.2) θ̂ πn = (S π
n−1)−1

n∑

k=1

Φn, k−1Xn, k where S π
n−1 = Sn−1 + π n |||B−1

n ||| Ip

with possibly π = 0 if Γ is invertible, in which case it is clearly the standard OLS given
above, but necessarily π > 0 otherwise. Consider also the penalized version of the variance
and the corrected parameter

(2.3) Γπ = Γ + π Ip and θ πn = (S π
n−1)−1Sn−1 θn.

By construction, Γ is, at worst, non-negative definite and for π > 0, Γπ turns out to be
invertible. The same goes for S π

n−1.

Corollary 2.2. Under hypotheses (H1)–(H5), for all π > 0, the sequence
( √

n

bn (1− ρ(An))
1
2

(
θ̂ πn − θ πn

)
)

n> 1
6

25



satisfies an LDP with speed (b 2
n) and a rate function I πθ : Rp → R̄+ defined as

I πθ (x) =

{
h

2σ2 〈x,Γπ Γ † Γπ x〉 for x ∈ Im(Γ−1
π Γ)

+∞ otherwise

where the variance Γ is given in (1.11), Γπ is the penalized variance given in (2.3) and h
comes from (H4), respectively. If in addition Γ is invertible, then the sequence

( √
n

bn (1− ρ(An))
1
2

(
θ̂n − θn

)
)

n> 1

satisfies an LDP with speed (b 2
n) and a rate function Iθ : Rp → R+ defined as

Iθ(x) =
h

2σ2
〈x,Γx〉.

Proof. See Section 3.2.6. �
To sum up, this result shows that, when Γ is invertible, the OLS satisfies an MDP, and

even when Γ is singular, one may reach a compromise by getting an MDP for a penalized
estimation. In the same vein, notice also that, in the invertible case,

lim
π→ 0+

I πθ (x) = Iθ(x).

Remark. In the stable case where ρ(An) = ρ(A) < 1, we simply have (1−ρ(An)) |||B−1
n ||| = h

and Γn |||B−1
n |||−1 = Γ for all n > 1. By contraction, the MDP of Corollary 2.2 coincides

with the one of Thm. 3 of [21] when Γ is invertible.

2.2. Some explicit examples. Before giving some examples, we can already note that (H5)
implies

√
n (1 − ρ(An)) → +∞. Thus, necessarily, the convergence 1 − ρ(An) → 0 cannot

occur with an exponential rate, this is the reason why we focus on polynomial rates of the
form 1 − ρ(An) = c n−α for some c > 0 in this section. Accordingly, in all the examples
below, (H5) is only possible when 0 < α < 1

3+2η
< 1

3
. Thus, one cannot expect a sequence

of coefficients moving too fast toward instability. The domain of validify of the speed of the
MDP will be

1 � bn � n
1−(3+2η)α

2 � √n.
2.2.1. Univariate case with one nearly unit root. Suppose that p = 1. Then, (H2) and (H3)
imply that |θn| < 1 and θn → ±1. We also have Bn = 1− θ 2

n and (H4) can be expressed like

lim
n→+∞

B−1
n

|B−1
n |

= 1 and lim
n→+∞

(1− |θn|) |B−1
n | =

1

2
.

A straightforward calculation shows that

Γn =
σ2

1− θ 2
n

and Γ = σ2 > 0

so that we can choose π = 0. The standard cases, illustrated on Figure 1, are θn = 1−c1 n
−α

for the positive unit root and θn = −1+c2 n
−α for the negative unit root, with c1, c2 > 0 and

α > 0. The rate function associated with Corollary 2.2 is Iθ(x) = x2

4
, which corresponds to

Prop. 2.1 of [17]. Indeed, their rate x 7→ x2

2
is associated to an LDP with the renormalization

(1 − θ 2
n)

1
2 whereas our normalization is (1 − |θn|)

1
2 . By contraction, the asymptotic factor√

2 explains the difference.
7
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Figure 1. Simulation of the process (solid line) and fitted values (dotted
line) for n = 104, π = 0 and N (0, 1) innovations. The setting is c1 = 0.1 and
α = 0.32 on the left, c2 = 0.1 and α = 0.32 on the right.

2.2.2. Bivariate case with one nearly unit root. Suppose now that p = 2 and sp(A) = {±1, λ}
with |λ| < 1. This situation occurs, for example, when

An =

(
λ+ 1− c n−α −λ (1− c n−α)

1 0

)

whose eigenvalues are 1− c n−α and λ. This is illustrated on Figure 2. For c > 0 and α > 0,
(H2) and (H3) are satisfied. The direct calculation gives

B−1
n =

1

2 c (λ− 1)2




1 −λ −λ λ2

1 −λ −λ λ2

1 −λ −λ λ2

1 −λ −λ λ2



(
nα +O(1)

)

whence we obtain

lim
n→+∞

B−1
n

|||B−1
n |||1

=
1

4




1 −λ −λ λ2

1 −λ −λ λ2

1 −λ −λ λ2

1 −λ −λ λ2


 and lim

n→+∞
n−α |||B−1

n |||1 =
2

c (λ− 1)2

so (H4) is satisfied with the 1–norm. The choice π = 0 is impossible, and we finally find

Γπ =
σ2

4

(
1 + 4

σ2 π 1
1 1 + 4

σ2 π

)
.

2.2.3. Bivariate case with two nearly unit roots. Following the same lines, suppose that p = 2
and sp(A) = {−1, 1}. This situation occurs, for example, when

An =

(
(c2 − c1)n−α (1− c1 n

−α)(1− c2 n
−α)

1 0

)

8
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Figure 2. Simulation of the process (solid line) and fitted values (dotted line)
for n = 104, π = 10−5 and N (0, 1) innovations. The setting is λ = 0.5, c = 0.1
and α = 0.32 on the left, λ = −0.67, c = 0.2 and α = 0.25 on the right.

whose eigenvalues are 1 − c1 n
−α and −1 + c2 n

−α. This is illustrated on Figure 3. For
c1, c2 > 0 and α > 0, (H2) and (H3) are satisfied. The direct calculation gives

B−1
n =

1

8 c1 c2




c1 + c2 c2 − c1 c2 − c1 c1 + c2

c2 − c1 c1 + c2 c1 + c2 c2 − c1

c2 − c1 c1 + c2 c1 + c2 c2 − c1

c1 + c2 c2 − c1 c2 − c1 c1 + c2



(
nα +O(1)

)

whence we obtain

lim
n→+∞

B−1
n

|||B−1
n |||1

=
1

2 (c1 + c2) + 2 |c2 − c1|




c1 + c2 c2 − c1 c2 − c1 c1 + c2

c2 − c1 c1 + c2 c1 + c2 c2 − c1

c2 − c1 c1 + c2 c1 + c2 c2 − c1

c1 + c2 c2 − c1 c2 − c1 c1 + c2


 .

Moreover,

lim
n→+∞

n−α |||B−1
n |||1 =

(c1 + c2) + |c2 − c1|
4 c1 c2

so (H4) is satisfied with the 1–norm. The choice π = 0 is possible and we finally find

Γ =
σ2

2 (c1 + c2) + 2 |c2 − c1|

(
c1 + c2 c2 − c1

c2 − c1 c1 + c2

)
.

2.3. Discussion on multiple eigenvalues and conclusion. As we will see in the proof
of Lemma 3.1, the distinct eigenvalues assumption (H2) is sufficient to reach our results.
However, a less stringent formulation of (H2) could be :

(H ′2) Convergence of the companion matrix. There exists a p× p matrix A such that

lim
n→+∞

An = A

9
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Figure 3. Simulation of the process (solid line) and fitted values (dotted line)
for n = 104, π = 0 and N (0, 1) innovations. The setting is c1 = 0.1, c2 = 0.2
and α = 0.32 on the left, c1 = 0.01, c2 = 0.01 and α = 0.25 on the right.

and the top right element of A is non-zero. In addition, there exists a rank n0 such
that, for all n > n0, An is diagonalizable and the change of basis matrix Pn satisfies
|||Pn||| 6 Cst and |||P −1

n ||| 6 Cst.

In general, multiple eigenvalues may not falsify our reasonings, except when the multiplicity
concerns the eigenvalues whose modulus tends to 1. Indeed, the coefficients of |||A`n||| may
grow faster in that case. Consider the simple bivariate example where

A`n =

(
a11, ` a12, `

a21, ` a22, `

)
=

(
θn, 1 a11, `−1 + θn, 2 a11, `−2 θn, 2 a11, `−1

θn, 1 a21, `−1 + θn, 2 a21, `−2 θn, 2 a21, `−1

)
.

Then, it is not hard to solve this linear difference equation whose characteristic roots are the
eigenvalues of An. In case of multiplicity, the top left term takes the form of

a11, ` = (cn + dn `) ρ
`(An)

and even if |cn| 6 Cst and |dn| 6 Cst for n large enough, it follows that

+∞∑

`=0

|||A`n||| ∼
Cst

(1− ρ(An))2
.

That invalidates all our reasonings and, in that case, new approaches are needed to poten-
tially reach the moderate deviations. From our viewpoint, this is the main weakness of the
set of hypotheses. As it is already observed in [7], multiple unit roots located at 1 influence
the rate of convergence of the OLS. We conjecture that the same phenomenon occurs here
and that a larger power should come with 1− ρ(An) in the renormalization.

To sum up, this study is a wide generalization of [17] and, although not complete in virtue
of the latter remark, it covers most of the MDP issues for the estimation in the stable but
nearly unstable case. Large deviations would undoubtedly be a very useful and challenging
study to carry out, naturally extending this one. However, to the best of our knowledge,
it is not even entirely treated in the stable time-invariant case ρ(An) = ρ(A) < 1, clearly
revealing the complexity of the problem. A complicated but stimulating trail for future
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studies could rely on the exponential, and not only polynomial, neighborhood of the unit
root. Along the same lines and even if it is of less practical interest, we might as well focus
on the explosive side of the unit roots, where new theoretical developments are necessary.

3. Technical proofs

In all the proofs, Cst denotes a generic positive constant that is not necessarily identical
from one line to another. We will frequently use the fact that ‖vec(·)‖ = ||| · |||F 6 Cst ||| · |||.
For asymptotic equivalences, fn � gn means that both fn = O(gn) and gn = O(fn) whereas
fn ∼ gn stands for fn

gn
→ 1.

3.1. Some linear algebra tools. Thereafter, we denote by λ1, . . . , λp the (distinct) eigen-
values of A and λn, 1, . . . , λn, p those of An, in descending order of modulus. We start by
establishing two lemmas that will prove to be very useful in what follows.

Lemma 3.1. Under hypotheses (H2) and (H3), as n tends to infinity,

+∞∑

`=0

|||A`n||| �
1

1− ρ(An)
and

+∞∑

`=0

(`+ 1) |||A`n||| �
1

(1− ρ(An))2
.

Proof. The lower bounds are established in Section 1.2, in (1.8) and (1.9). For the upper
bounds, fix

δ =
2

|λp|
, ε1 =

1

2
min

16 i,j 6 p
i 6= j

∣∣∣∣
1

λi
− 1

λj

∣∣∣∣ and ε2 = 2 max
16 i,j 6 p
i 6= j

∣∣∣∣
1

λi
− 1

λj

∣∣∣∣.

According to Thm. 2.4.9.2 of [13], (H2) implies the existence of a rank n0 = n0(δ, ε1, ε2) such
that, for all n > n0, the eigenvalues of An satisfy

(3.1) 0 < max
16 i6 p

∣∣∣∣
1

λn, i

∣∣∣∣ < δ

and

(3.2) ε1 < min
16 i,j 6 p
i 6= j

∣∣∣∣
1

λn, i
− 1

λn, j

∣∣∣∣ < max
16 i,j 6 p
i 6= j

∣∣∣∣
1

λn, i
− 1

λn, j

∣∣∣∣ < ε2.

Let Pn be a change of basis matrix in the diagonalization of An. Then, since An is a
companion matrix, a standard choice would be

(3.3) Pn =




1 1 . . . 1
1

λn, 1
1

λn, 2
. . . 1

λn, p
...

...
...

1

λp−1
n, 1

1

λp−1
n, 2

. . . 1

λp−1
n, p


 .

This Vandermonde matrix is invertible if and only if λn, i 6= λn, j for all i 6= j (see e.g. Sec.
0.9.11 of [13]). In that case, P −1

n is closely related to the Lagrange interpolating polynomials
given, for i ∈ {1, . . . , p}, by

Li(X) =

∏
j 6= i(X − 1

λn, j
)

∏
j 6= i(

1
λn, i
− 1

λn, j
)
.
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Precisely, the i–th row of P −1
n contains the coefficients of Li(X) in the basis (1, X, . . . , Xp−1)

of Rp−1[X], i.e.

(3.4) P −1
n =

(
pn, i, j∏

j 6= i (
1

λn, i
− 1

λn, j
)

)

16 i,j 6 p

where the relation
∏

j 6= i(X − 1
λn, j

) = pn, i, 1 + pn, i, 2X + . . .+ pn, i, pX
p−1 enables to identify

each pn, i, j. Combining (3.1) and (3.2), it follows that, for all n > n0,

|||Pn|||1 6 p (1 + δ + . . .+ δ p−1) 6 Cst.

We also have |||P −1
n |||1 6 Cst since ε p−1

1 <
∏

j 6= i | 1
λn, i
− 1

λn, j
| < ε p−1

2 and since pn, i, j is a finite

combination of sums and products of 1
λn, 1

, . . . , 1
λn, p

. To sum up, for all ` > 0 and n > n0,

A`n = PnD
`
n P

−1
n where Dn = diag(λn, 1, . . . , λn, p).

Consequently,

|||A`n||| = |||A`n|||1{n6n0} + |||PnD `
n P

−1
n |||1{n>n0}

6 |||A`n|||1{n6n0} + |||Pn||| |||P −1
n ||| |||D `

n|||1{n>n0}

6 |||A`n|||1{n6n0} + Cst ρ
`(An)1{n>n0}.(3.5)

It only remains to sum over ` and to let n tend to infinity to reach the first result. Similarly,

(`+ 1) |||A`n||| 6 (`+ 1) |||A`n|||1{n6n0} + Cst (`+ 1) ρ`(An)1{n>n0}

so we get the second result by following the same lines. �
Lemma 3.2. Under hypotheses (H2) and (H3), we have the convergence

lim
n→+∞

Awnn = 0

for any rate (wn) satisfying wn (1− ρ(An))→ +∞.

Proof. Consider the rank n0 introduced in the proof of Lemma 3.1. Then, according to the
inequality (3.5),

(3.6) |||Awnn ||| 6 |||Awnn |||1{n6n0} + Cst ρ
wn(An)1{n>n0}

where the invertible and uniformly bounded matrices Pn and P −1
n are given in (3.3) and

(3.4), respectively. We also have

(3.7) lim
n→+∞

ρwn(An) = lim
n→+∞

e−wn (1−ρ(An)) = 0

from the hypothesis on (wn). It remains to let n tend to infinity in the above inequality. �

3.2. Proofs of the main results. First of all, it is convenient to express the empirical
variance of the process as

1

n

n∑

k=1

(Φn, k ΦT
n, k − Γn) =

1

n

n∑

k=1

An Φn, k−1 ΦT
n, k−1A

T
n +

1

n

n∑

k=1

An Φn, k−1E
T
k

+
1

n

n∑

k=1

Ek ΦT
n, k−1A

T
n +

1

n

n∑

k=1

Ek E
T
k − Γn
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=
1

n

n∑

k=1

∆n, k +
1

n

n∑

k=1

An (Φn, k ΦT
n, k − Γn)AT

n −
Tn
n

where the variance Γn is given in (1.4),

∆n =
1

n

n∑

k=1

∆n, k(3.8)

=
1

n

n∑

k=1

(An Φn, k−1E
T
k + Ek ΦT

n, k−1A
T
n + Ek E

T
k + An ΓnA

T
n − Γn)

and the residual term is

Tn = An (Φn, n ΦT
n, n − Φn, 0 ΦT

n, 0)AT
n .

Then, solving this generalized Sylvester equation (Lem. 2.1 of [14]) and considering the
invertibility of Bn in (1.7) which is proved at the beggining of Section 1.2, we reach the
decomposition

(3.9) vec

(
1

n

n∑

k=1

(Φn, k ΦT
n, k − Γn)

)
= B−1

n vec(∆n)− B−1
n vec(Tn)

n
.

Let us now reason step by step, via some intermediate results.

3.2.1. Exponential moments of the squared initial value. We recall that, from the causal form
(1.3) of the process,

Φn, 0 =
+∞∑

`=0

A`nE−`.

The following result gives an exponential moment for the correctly renormalized squared
initial value.

Lemma 3.3. Under hypothesis (H1),

E
[

exp
( α
L2
n

|||Φn, 0 ΦT
n, 0|||

)]
< +∞

where Ln is given in (1.8).

Proof. By Cauchy-Schwarz inequality,

|||Φn, 0 ΦT
n, 0||| 6 ‖Φn, 0‖2 6

( +∞∑

`=0

‖A`nE−`‖
)2

6
( +∞∑

`=0

|||A`n|||
1
2 |||A`n|||

1
2 ‖E−`‖

)2

6 Ln

+∞∑

`=0

|||A`n||| ε 2
−`.

Moreover, from Jensen’s inequality, for all λ > 0,

exp

(
λ

Ln

+∞∑

`=0

|||A`n||| ε 2
−`

)
6 1

Ln

+∞∑

`=0

|||A`n||| eλ ε
2
−`
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using |||A
0
n|||

Ln
+ |||A1

n|||
Ln

+ . . . = 1. Taking the expectation and choosing λ = α given in (H1), we
deduce that

E
[

exp
( α
L2
n

|||Φn, 0 ΦT
n, 0|||

)]
6 1

Ln

+∞∑

`=0

|||A`n|||E
[
eα ε

2
−`
]

= E
[
eα ε

2
1
]
< +∞.(3.10)

�

3.2.2. Exponential convergence of the residual term. The residual term in the decomposition
(3.9) is given by

(3.11) Rn =
B−1
n vec(An (Φn, n ΦT

n, n − Φn, 0 ΦT
n, 0)AT

n )

n
.

Our next objective is to prove the exponential negligibility of this residual.

Lemma 3.4. Under hypotheses (H1)–(H5), for all r > 0,

lim
n→+∞

1

b 2
n

lnP
(√

n (1− ρ(An))
3
2

bn
‖Rn‖ > r

)
= −∞.

Proof. First, note that

‖Rn‖ 6
|||B−1

n ||| ‖vec(An (Φn, n ΦT
n, n − Φn, 0 ΦT

n, 0)AT
n )‖

n

6
Cst |||B−1

n ||| |||An|||2 |||Φn, n ΦT
n, n − Φn, 0 ΦT

n, 0|||
n

6
Cst |||B−1

n ||| |||An|||2 (|||Φn, n ΦT
n, n|||+ |||Φn, 0 ΦT

n, 0|||)
n

.

Thus,

P
(√

n (1− ρ(An))
3
2

bn
‖Rn‖ > r

)
= P

(
‖Rn‖ >

r bn (1− ρ(An))−
3
2√

n

)

6 2P
(
|||Φn, 0 ΦT

n, 0||| >
r bn
√
n (1− ρ(An))−

3
2

2Cst |||An|||2 |||B−1
n |||

)

6 2E
[
eα ε

2
1
]

exp

(
− r α bn

√
n (1− ρ(An))−

3
2

2Cst |||An|||2 |||B−1
n |||L2

n

)

where Ln is given in (1.8), using Markov’s inequality, the reasoning in the proof of Lemma
3.3 and the fact that, from the strict stationarity of the process, Φn, 0 ΦT

n, 0 and Φn, n ΦT
n, n

share the same distribution. Hence, for a sufficiently large n,

1

b 2
n

lnP
(√

n (1− ρ(An))
3
2

bn
‖Rn‖ > r

)
6

ln 2 + lnE
[
eα ε

2
1

]

b 2
n

− r α
√
n (1− ρ(An))−

3
2

2Cst bn |||An|||2 |||B−1
n |||L2

n

6
ln 2 + lnE

[
eα ε

2
1

]

b 2
n

− Cst
√
n (1− ρ(An))

3
2

bn
14
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since |||B−1
n |||

1
2 ∼
√
h (1− ρ(An))−

1
2 from (H4), L2

n = O((1− ρ(An))−2) from Lemma 3.1 and
since, from (H2), |||An||| converges. Finally, letting n tend to infinity, (H1) and (H5) conclude
the proof. �
3.2.3. The truncated sequence. In what follows, we define the rate

(3.12) mn =

⌊(
1

1− ρ(An)

)3+3η
3+2η

⌋

and we note from (H3)–(H5) that

(3.13) lim
n→+∞

mn(1− ρ(An)) = +∞ and lim
n→+∞

bn |||B−1
n |||

1
2 m

1+ 2η
3

n√
n

= 0.

Following the idea of [17], we are going to use mn as a truncation parameter. Consider

(3.14) Ψn, k =
mn−2∑

`=0

A`nEk−`

as an approximation of Φn, k in its causal form (1.3). We also define the truncated version
of the summands ∆n, k in (3.8) as

(3.15) ζn, k = An Ψn, k−1E
T
k + Ek ΨT

n, k−1A
T
n + Ek E

T
k + An ΓnA

T
n − Γn.

The process (B−1
n vec(ζn, k))k is strictly stationary and mn–dependent, according to Def. 6.4.3

of [4]. Let us study some properties of this process.

Lemma 3.5. Under hypotheses (H1)–(H4), we can find a constant cα > 0 such that, for a
sufficiently large n,

E
[

exp
(
cα |||B−1

n |||−1

wn∑

`=0

|||A`nE−`E T
1 |||
)]
6 E

[
eα ε

2
1
]

for any rate (wn) satisfying wn (1− ρ(An))→ +∞.

Proof. By Hölder’s inequality,

E
[

exp
(
cα |||B−1

n |||−1

wn∑

`=0

|||A`nE−`E T
1 |||
)]
6 E

[
exp

(
cα |||B−1

n |||−1

wn∑

`=0

|||A`n||| ε 2
1

)]
.

Moreover, for the rank n0 and the uniformly bounded matrices Pn and P −1
n introduced in

the proof of Lemma 3.1,
wn∑

`=0

|||A`n||| =

n0∑

`=0

|||A`n|||+
wn∑

`=n0+1

|||A`n|||

=

n0∑

`=0

|||A`n|||+
wn∑

`=n0+1

|||PnD `
n P

−1
n ||| 6 Cst

(
1 +

1− ρwn(An)

1− ρ(An)

)

as soon as wn > n0. Thus,

|||B−1
n |||−1

wn∑

`=0

|||A`n||| 6 Cst

(
|||B−1

n |||−1 +
1− ρwn(An)

|||B−1
n ||| (1− ρ(An))

)
.
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Finally, (H4), (1.10) and (3.7) lead, for large values of n, to

|||B−1
n |||−1

wn∑

`=0

|||A`n||| 6 Cst.

It remains to choose cα = α
Cst

. �

Lemma 3.6. Under hypotheses (H2)–(H4), for all n > 1 and k ∈ {1, . . . , n},

E[vec(ζn, k)] = 0 and Cov(vec(ζn, k), vec(ζn, j)) =

{
0 for k 6= j
Υn for k = j

where the p2 × p2 covariance Υn can be explicitely built in terms of σ2, An and Bn. In
addition,

lim
n→+∞

B−1
n Υn (B−1

n )T

|||B−1
n ||| 3

= Υ

where the non-zero limiting matrix Υ is given in (3.18).

Proof. We will use in what follows Kp and Up defined in (1.5). Let Fk = σ(ε`, ` 6 k) be the
σ–algebra of the events occurring up to time k. Then, it is easy to see that

E[vec(ζn, k)] = E[E[vec(ζn, k) | Fk−1] ]

= σ2 vec(Kp) + vec(An ΓnA
T
n − Γn) = 0

in virtue of (1.6). For k > j, by direct calculation,

E[vec(ζn, k) vecT (ζn, j)] = E[E[vec(ζn, k) vecT (ζn, j) | Fk−1] ]

= E[ (E[vec(An Ψn, k−1E
T
k ) + vec(Ek ΨT

n, k−1A
T
n )| Fk−1]

+ σ2 vec(Kp) + vec(An ΓnA
T
n − Γn)) vecT (ζn, j)] = 0

and the same is true for j > k since (E[vec(ζn, k) vecT (ζn, j)])
T = E[vec(ζn, j) vecT (ζn, k)] = 0.

Now for k = j, a tedious but straightforward calculation leads to

E[vec(ζn, k) vecT (ζn, k)] = σ2Kp ⊗ (An E[Ψn, k−1ΨT
n, k−1]AT

n )

+ σ2 Up ⊗ (An E[Ψn, k−1ΨT
n, k−1]AT

n )⊗ U T
p

+ σ2 U T
p ⊗ (An E[Ψn, k−1ΨT

n, k−1]AT
n )⊗ Up

+ σ2 (An E[Ψn, k−1ΨT
n, k−1]AT

n )⊗Kp

+ (τ 4 − σ4) vec(Kp) vecT (Kp) = Υn.(3.16)

To give an explicit expression of Υn, it suffices to observe that the truncated expression
(3.14) has a variance given by

Γn,mn = E[Ψn, k−1ΨT
n, k−1] = σ2

mn−2∑

`=0

A`nKp (AT
n )`

so that

vec(Γn,mn) = σ2

mn−2∑

`=0

(An ⊗ An)` vec(Kp)

= σ2B−1
n (Ip2 − (An ⊗ An)mn−1) vec(Kp).
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Let us now look at the asymptotic behavior of Υn correctly renormalized. First, we have the
convergence

lim
n→+∞

(An ⊗ An)mn−1 = 0

coming from the identity (An ⊗ An)mn−1 = Amn−1
n ⊗ Amn−1

n and Lemma 3.2. Together with
(H4), this implies

lim
n→+∞

vec(Γn,mn)

|||B−1
n |||

= σ2H vec(Kp).

In the end of the proof, we call vec−1 the vectorization inverse operator (namely, in our
context, the reconstruction of a p× p matrix from its vectorization of size p2). Then,

(3.17) lim
n→+∞

Γn,mn
|||B−1

n |||
= σ2 vec−1(H vec(Kp)) = Γ.

Combining (3.16) with (3.17) and (H4), we have

(3.18) Υ = σ2H (Kp ⊗ ΓA + Up ⊗ ΓA ⊗ U T
p + U T

p ⊗ ΓA ⊗ Up + ΓA ⊗Kp)H
T

where ΓA = AΓAT . �
Remark. As a by-product, we also obtain, following the same lines,

lim
n→+∞

Γn
|||B−1

n |||
= Γ

where Γn is given in (1.4), which proves (1.11). The variance Γn,mn defined above may be
seen as the truncated version of Γn.

3.2.4. The remainder of the truncation. We denote by

(3.19) Λn =
1

n

n∑

k=1

(An (Φn, k−1 −Ψn, k−1)E T
k + Ek (Φn, k−1 −Ψn, k−1)T AT

n )

the remainder of the truncation of ∆n in (3.8) made via (3.15). Our last preliminary objective
is to establish the following lemma.

Lemma 3.7. Under hypotheses (H1)–(H5), for all r > 0,

lim
n→+∞

1

b 2
n

lnP
(√

n (1− ρ(An))
3
2

bn
‖B−1

n vec(Λn)‖ > r

)
= −∞.

Proof. Clearly, both terms in the definition of (3.19) are similar and we will only work on
the first one. From the causal expression (1.3) and the truncation (3.14), we note that

n∑

k=1

An (Φn, k−1 −Ψn, k−1)E T
k =

n∑

k=1

+∞∑

`=mn−1

A`+1
n Ek−1−`E

T
k

= Amnn

+∞∑

`=0

A`n

n∑

k=1

Ek−`−mn E
T
k .

Thus, with Mn given in (1.9) and applying Lem. 17 of [15] under (H1),

P
(

1

n

∣∣∣
∣∣∣
∣∣∣

n∑

k=1

An (Φn, k−1 −Ψn, k−1)E T
k

∣∣∣
∣∣∣
∣∣∣ > r

bn√
n
|||B−1

n |||
1
2

)
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6 P
( +∞∑

`=0

|||A`n|||
∣∣∣

n∑

k=1

εk−`−mn εk

∣∣∣ >
+∞∑

`=0

(`+ 1) |||A`n|||
r bn
√
n |||B−1

n |||
1
2

Mn |||Amnn |||

)

6
+∞∑

`=0

P
(

max
16 j 6n

∣∣∣
j∑

k=1

εk−`−mn εk

∣∣∣ > r (`+ 1) bn
√
n |||B−1

n |||
1
2

Mn |||Amnn |||

)

6 Cst

+∞∑

`=0

exp
(
−

r2 b 2
n n t

2
n, `

α0 n+ β0 r tn, ` bn
√
n

)
(3.20)

for some α0 > 0 and β0 > 0, where

tn, ` =
(`+ 1) |||B−1

n |||
1
2

Mn |||Amnn |||
.

Our choice of mn in (1.9), the properties of Lemma 3.1, (3.6) and our hypotheses on the
rates of convergence lead, for n large enough, to

|||B−1
n |||−

1
2 Mn |||Amnn ||| 6 Cst (1− ρ(An))−

3
2 ρmn(An) −→ 0

and obviously tn, ` → +∞. Hence, like in formula (3.11) of [17], there are some constants
α ′0 > 0 and β ′0 > 0 such that, for all ` > 0 and large values of n,

r2 n b 2
n t

2
n, `

α0 n+ β0 r tn, ` bn
√
n

=
r2 (`+ 1) b 2

n tn, `

α0 |||B−1
n |||−

1
2 Mn |||Amnn |||+ r β0 (`+ 1) bn√

n

> b 2
n tn, `

r2

α ′0 + r β ′0
.

Going back to (3.20),

+∞∑

`=0

exp
(
−

r2 b 2
n n t

2
n, `

α0 n+ β0 r tn, ` bn
√
n

)
6

+∞∑

`=0

exp
(
− b 2

n tn, `
r2

α ′0 + r β ′0

)

=
e−Vn

1− e−Vn

where, for convenience, we note

Vn =
r2 b 2

n |||B−1
n |||

1
2

Mn |||Amnn ||| (α ′0 + r β ′0)
−→ +∞.

To sum up,

1

b 2
n

lnP
(∣∣∣
∣∣∣
∣∣∣

n∑

k=1

An (Φn, k−1 −Ψn, k−1)E T
k

∣∣∣
∣∣∣
∣∣∣ > r bn

√
n |||B−1

n |||
1
2

)

6 Cst − ln(1− e−Vn)

b 2
n

− Vn
b 2
n

6 Cst − ln(1− e−Vn)

b 2
n

− r2 |||B−1
n |||

1
2

Mn |||Amnn ||| (α ′0 + r β ′0)
−→ −∞.
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This is clearly sufficient to finish the proof since, from (H4),
√
n (1− ρ(An))

3
2

bn
‖B−1

n vec(Λn)‖ 6 Cst

√
n

bn
|||B−1

n |||−
1
2 ‖vec(Λn)‖

6 Cst

√
n

bn
|||B−1

n |||−
1
2 |||Λn|||

for n large enough. �

We are now ready to prove Theorem 2.1 and Corollary 2.2.

3.2.5. Proof of Theorem 2.1. All the technical results of the previous sections are now going
to be concretely used. Consider the sequence

(3.21) ξn, k =
B−1
n vec(ζn, k)

|||B−1
n |||

3
2

where ζn, k is given in (3.15). The process (ξn, k)k is also strictly stationary andmn–dependent.
Like in [18] or [17, suppl. mat.], let us extract an independent sequence from this process.
For j ∈ {1, . . . , jn}, define

ξ ′n, j = ξn, (j−1)mn+1 + . . .+ ξn, jmn

where jn = b n
mn
c and where (mn) and its properties are given in (3.12). Then, (ξ ′n, j)j is

strictly stationary and 1–dependent. Next, for t ∈ {1, . . . , tn}, define

ξ ′′n, t = ξ ′n, (t−1)un+1 + . . .+ ξ ′n, tun−1

where tn = b jn
un
c and (un) is another rate satisfying

(3.22) lim
n→+∞

un = +∞ and lim
n→+∞

bn |||B−1
n |||

1
2 (mn un)1+ 2η

3√
n

= 0.

To be convinced that such a rate exists, one can use (3.13) and the fact that | ln fn| → +∞
and fn | ln fn|a → 0 when fn → 0. The process (ξ ′′n, t)t is now i.i.d. and the rates satisfy

(3.23) lim
n→+∞

tn unmn

n
= 1.

The reasoning of [17, suppl. mat.] does not suit us, so we need to reformulate the establish-
ment of the MDP. First, by a Taylor-Lagrange expansion,

(3.24) exp
(〈
λ,

bn√
n
ξ ′′n, 1

〉)
= 1 +

bn√
n
〈λ, ξ ′′n, 1〉+

b 2
n

2n
〈λ, ξ ′′n, 1〉2 +

b3
n

6n
3
2

〈λ, ξ ′′n, 1〉3 e νn

in which the remainder term satisfies, for any α > 0,

eανn < exp
(α bn√

n
|〈λ, ξ ′′n, 1〉|

)
6 exp

(α bn√
n
‖λ‖

mnun∑

`=1

‖ξn, `‖
)

6 exp
(
Cst

bn√
n
|||B−1

n |||−
1
2

mnun∑

`=1

|||ζn, `|||
)
.
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Now, the random variables |||ζn, `||| sharing the same distribution for all ` > 0, it follows from
Hölder’s inequality that,

E
[
eανn

]
< E

[
exp

(
Cst

bnmn un√
n
|||B−1

n |||−
1
2 |||ζn, 1|||

)]

= E
[

exp
(
Cst

bn |||B−1
n |||

1
2 mn un√
n

|||B−1
n |||−1 |||ζn, 1|||

)]
< +∞(3.25)

for n large enough, using Lemma 3.5 with mn (1 − ρ(An)) → +∞ stemming from (3.13),
the convergence of |||An|||, (H1) and treating all the terms of (3.15) similarly. Taking the
expectation in (3.24) and exploiting the independence of the zero-mean process (ξ ′′n, t)t, we
obtain the decomposition

1

b 2
n

lnE
[

exp
(〈
λ,

bn√
n

n∑

`=1

ξn, `

〉)]
∼ tn

b 2
n

lnE
[

exp
(〈
λ,

bn√
n
ξ ′′n, 1

〉)]

=
tn
2n

E
[
〈λ, ξ ′′n, 1〉2

]
+O

(
tn bn

6n
3
2

∣∣E
[
〈λ, ξ ′′n, 1〉3 e νn

]∣∣
)

(3.26)

for we can see, as it is done in [18], that the residual term

τn =
n∑

`=1

ξn, ` −
tn∑

`=1

ξ ′′n, `

plays a negligible role in comparison to the main one. To eliminate the third-order term, we
first look at the fourth-order moment of 〈λ, ξ ′′n, 1〉, that is

E
[
〈λ, ξ ′′n, 1〉4

]
6 Cst ‖λ‖4

|||B−1
n |||2

E
[∣∣∣
∣∣∣
∣∣∣
mnun∑

`=1

ζn, `

∣∣∣
∣∣∣
∣∣∣
4
]
.

A long but standard calculation shows that

E
[∣∣∣
∣∣∣
∣∣∣An

mnun∑

`=1

Ψn, `−1E
T
`

∣∣∣
∣∣∣
∣∣∣
4
]
6 Cst E

[∥∥∥
mnun∑

`=1

Ψn, `−1 ε`

∥∥∥
4
]

= O
(
(mn un |||B−1

n |||)2
)

as n tends to infinity. This result is reached using the strict stationarity of the process, the
explicit expression of X4

n, 0 in terms of A`n, the inequality (3.6) and, finally, using (H4) giving

the equivalence between (1− ρ(An))−2 and Cst |||B−1
n |||2. So,

E
[
〈λ, ξ ′′n, 1〉4

]
= O(m2

n u
2
n).

By Lyapunov’s inequality,

E
[
|〈λ, ξ ′′n, 1〉|3+δ

]
6
(
E
[
〈λ, ξ ′′n, 1〉4

]) 3+δ
4 = O

(
(mn un)

3+δ
2

)

for a small δ > 0. Now, combining this result with (3.25) and Hölder’s inequality, for
sufficiently large values of n,

tn bn

n
3
2

E
[
|〈λ, ξ ′′n, 1〉3 e νn|

]
6 tn bn

n
3
2

(
E
[
|〈λ, ξ ′′n, 1〉|3+δ

]) 3
3+δ
(
E
[
e

3+δ
δ
νn
]) δ

3+δ
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6 Cst
tn bn

n
3
2

(mn un)
3
2 −→ 0(3.27)

by (3.25), (3.23) and the properties in (3.22). The second-order term in (3.26) satisfies

tn
2n

E
[
〈λ, ξ ′′n, 1〉2

]
=

tn
2n

λT V(ξ ′′n, 1)λ =
tn unmn

2n |||B−1
n |||3

λT B−1
n V(vec(ζn, 1))(B−1

n )Tλ

=
tn unmn

2n
λT

B−1
n Υn (B−1

n )T

|||B−1
n ||| 3

λ

−→ 1

2
〈λ,Υλ〉(3.28)

where we used (3.23) and the results of Lemma 3.6. The combination of (3.26), (3.27) and
(3.28) together with the Gärtner-Ellis theorem (see e.g. Sec. 2.3 of [8]) shows that the
sequence (

1

bn
√
n

n∑

`=1

ξn, `

)

n> 1

satisfies an LDP with speed (b 2
n) and rate function given by the Fenchel-Legendre transform

of the above logarithmic moment generating function, i.e.

I(x) = sup
λ∈Rp2

{
〈λ, x〉 − 1

2
〈λ,Υλ〉

}
.

Note that, due to its particular structure, Υ is only non-negative definite as soon as p > 1
(by way of example, its last row and column are zero). In that case (see e.g. Ex. 1.1.4 of
[12], page 212), the explicit expression of this quadratic rate function, strictly convex on its
relative interior, is

I(x) =

{
1
2
〈x,Υ † x〉 for x ∈ Im(Υ)

+∞ otherwise.

After the truncation introduced in (3.14), the decomposition (3.9) can be rewritten as
√
n (1− ρ(An))

3
2

bn
vec

(
1

n

n∑

k=1

(Φn, k ΦT
n, k − Γn)

)
=

(1− ρ(An))
3
2 |||B−1

n |||
3
2

bn
√
n

n∑

k=1

ξn, k

+

√
n (1− ρ(An))

3
2

bn
R ∗n

where, in the remainder term R ∗n = B−1
n vec(Λn)−Rn, the residual of the truncation is given

in (3.19) and the main residual Rn is given in (3.11). Lemma 3.4 and Lemma 3.7 show that
the first term in the right-hand is an exponentially good approximation of the left-hand side
and that, as a consequence, they share the same LDP (see Def. 4.2.10 and Thm. 4.2.13 of
[8]). The contraction principle (see Thm. 4.2.1 of [8]) enables to compute the rate function
associated with the LDP, namely

(3.29) IΓ(x) = I
(
h−

3
2 x
)

=

{
1

2h3
〈x,Υ † x〉 for x ∈ Im(Υ)

+∞ otherwise

where the limiting value h > 0 comes from (H4). �
21

40



3.2.6. Proof of Corollary 2.2. Using (2.2) and (2.3),
√
n

bn (1− ρ(An))
1
2

(
θ̂ πn − θ πn

)
=

√
n (S π

n−1)−1

bn (1− ρ(An))
1
2

n∑

k=1

Φn, k−1 εk

=
n |||B−1

n ||| (S π
n−1)−1

bn
√
n |||B−1

n |||
1
2 (1− ρ(An))

1
2 |||B−1

n |||
1
2

n∑

k=1

Φn, k−1 εk.

Our objective is first to prove that, for all r > 0,

(3.30) lim
n→+∞

1

b 2
n

lnP
(∣∣∣
∣∣∣
∣∣∣n |||B−1

n ||| (S π
n−1)−1 − Γ−1

π

∣∣∣
∣∣∣
∣∣∣ > r

)
= −∞

where Γπ is the invertible penalized variance (2.3), and then to establish an LDP for the
sequence

(3.31)

(
1

bn
√
n |||B−1

n |||
1
2

n∑

k=1

Φn, k−1 εk

)

n> 1

in order to obtain the announced result, via the contraction principle (Thm. 4.2.1 of [8]).
On the one hand, we know from Theorem 2.1 and (3.29) that

1

b 2
n

lnP
(∣∣∣
∣∣∣
∣∣∣ Sn−1

n |||B−1
n |||

− Γn
|||B−1

n |||
∣∣∣
∣∣∣
∣∣∣ > r

)
=

1

b 2
n

lnP
( √

n

bn |||B−1
n |||

3
2

∣∣∣
∣∣∣
∣∣∣Sn−1

n
− Γn

∣∣∣
∣∣∣
∣∣∣ > rn

)

−→ −∞ = − lim
‖x‖→+∞

IΓ(x)

since, by (H4) and (H5),

rn =
r
√
n

bn |||B−1
n |||

1
2

−→ +∞

and (1− ρ(An))
3
2 ∼ h

3
2 |||B−1

n |||−
3
2 . So,

lim
n→+∞

1

b 2
n

lnP
(∣∣∣
∣∣∣
∣∣∣ S π

n−1

n |||B−1
n |||

− Γπ
n

∣∣∣
∣∣∣
∣∣∣ > r

)
= −∞ for Γπ

n =
Γn

|||B−1
n |||

+ π Ip.

It is also clear that{∣∣∣
∣∣∣
∣∣∣ S π

n−1

n |||B−1
n |||

− Γπ

∣∣∣
∣∣∣
∣∣∣ > r

}
⊂
{∣∣∣
∣∣∣
∣∣∣ S π

n−1

n |||B−1
n |||

− Γπ
n

∣∣∣
∣∣∣
∣∣∣ > r

2

}
∪
{
|||Γπ

n − Γπ||| >
r

2

}

and (1.11) shows that the second event in the right-hand side becomes impossible when n
increases. Hence, from the reasoning above,

lim
n→+∞

1

b 2
n

lnP
(∣∣∣
∣∣∣
∣∣∣ S π

n−1

n |||B−1
n |||

− Γπ

∣∣∣
∣∣∣
∣∣∣ > r

)
= −∞.

Now we shall use Lem. 2 of [21] to get (3.30).

On the other hand, all the work consisting in proving that the sequence (3.31) satisfies an
LDP with speed (b 2

n) has already been done in the proof of Theorem 2.1. Indeed, via the
truncation (3.14),

1

bn
√
n |||B−1

n |||
1
2

n∑

k=1

Ψn, k−1 εk =
1

bn
√
n |||B−1

n |||
1
2

n∑

k=1

mn−2∑

`=0

A`nEk−`−1 εk
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=
1

bn
√
n

n∑

k=1

Zn, k

where the process (Zn, k)k forms a strictly stationary and mn–dependent sequence. However,
apart from the renormalization, this is precisely the first column of the first term of (3.15).
Thus, the calculations are similar and we find, like in Lemma 3.6,

V(Zn, 1) =
σ2 Γn,mn
|||B−1

n |||
.

In that case, from the convergence (3.17) and the previous proof, the rate function associated
with the LDP is given by

J(x) = sup
λ∈Rp

{
〈λ, x〉 − σ2

2
〈λ,Γλ〉

}
=

{
1

2σ2 〈x,Γ † x〉 for x ∈ Im(Γ)
+∞ otherwise.

The exponential negligibility of the remainder of the truncation is obtained by following
the lines of Lemma 3.7. The contraction principle enables to compute the rate function
associated with the LDP, namely

(3.32) Iθ(x) = J
(
Γπ
√
hx
)

=

{
h

2σ2 〈x,Γπ Γ † Γπ x〉 for x ∈ Im(Γ−1
π Γ)

+∞ otherwise

where the exponential convergence (3.30) has been combined to the LDP established on the
sequence (3.31). �
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[10] Donsker, M. D., and Varadhan, S. R. S. Large deviations for stationary Gaussian processes.
Comm. Math. Phys. 97 (1985), 187–210.

23

42



[11] Duflo, M. Random iterative models. Applications of Mathematics (vol. 34), New York. Springer-Verlag,
Berlin, 1997.
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1.2 Processus à coefficients aléatoires

Dans cette section, nous passons en revue l’article Pröıa et Soltane (2018), publié
dans Mathematical Methods of Statistics et dans lequel nous développons un modèle
autorégressif d’ordre p = 1 à coefficients aléatoires et autocorrélés, afin de montrer que
l’estimation par moindres carrés qui en découle n’est plus consistante et qu’elle doit être
corrigée. Nous résumons également sans en fournir l’intégralité l’article Pröıa et Soltane
(2021), publié dans Statistics & Probability Letters et qui vise à généraliser les conclusions
précédentes à p ⩾ 1.

Résumé

Considérons une trajectoire (X0, . . . , Xn) issue d’un modèle autorégressif de la forme

∀n ⩾ 1, Xn = θnXn−1 + εn (1.6)

où la suite (θn)n⩾ 1 est formée de coefficients aléatoires et (εn)n⩾ 1 est un bruit blanc de
variance σ2 > 0. Traditionnellement on exprime les coefficients sous la forme θn = θ+ ηn
avec (ηn)n⩾ 1 un autre bruit blanc indépendant du précédent et de variance τ 2 ⩾ 0,
de sorte que E[θn] = θ pour tout n et que la présence d’aléa dans les coefficients se
ramène au test de H0 : “τ 2 = 0” contre H1 : “τ 2 > 0”. On sait depuis longtemps,
voir par exemple Nicholls et Quinn (1981), qu’en régime stationnaire (dont la condition
s’écrit ici θ2 + τ 2 < 1), l’estimation par moindres carrés est fortement consistante pour θ,
l’espérance des coefficients, à condition que le processus admette des moments d’ordre 2,
et qu’elle est asymptotiquement normale lorsque ce dernier admet des moments d’ordre 4.
Nous avons souhaité dans cette étude remettre en question l’hypothèse selon laquelle les
coefficients forment eux-mêmes un bruit blanc (centré en θ), hypothèse qui, dans un cadre
chronologique, parâıt peu crédible. Reprenons donc le modèle (1.6) mais en considérant
la suite (θn)n⩾ 1 comme stationnaire et présentant une autocorrélation d’ordre 1. Selon
(Brockwell et Davis, 2006, Prop. 3.2.1), cela est équivalent à l’existence d’un bruit blanc
(ηn)n⩾ 1 tel que les coefficients sont engendrés par une relation MA(1) de la forme

∀n ⩾ 1, θn = θ + α ηn−1 + ηn (1.7)

de sorte que Cov(θn, θn−1) = α τ 2. Ce modèle simple nous permet d’avoir un premier
aperçu de l’influence que peut avoir la présence de corrélation dans les coefficients. Sous
quelques hypothèses techniques, nous établissons les conditions d’existence d’une solution
causale stationnaire à cette équation de récurrence, des moments d’ordre 2 et 4 d’un tel
processus et nous en déduisons le comportement asymptotique de l’estimateur usuel des
moindres carrés qui, en particulier, perd sa propriété de consistance. Comme corollaire, un
test de H0 : “α = 0” contre H1 : “α ̸= 0” permettant de mettre en évidence la présence
de corrélation dans les coefficients est proposé. Le contenu de ce travail est donné en
intégralité en fin de section. Par ailleurs, précisons sans entrer dans les détails que nous
avons poursuivi ces recherches dans le cadre plus général de l’AR(p), voir Pröıa et Soltane
(2021), c’est-à-dire dans un modèle de la forme

∀n ⩾ 1, Φn = (Cθ +Nn−1Dα +Nn) Φn−1 + En (1.8)
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où En = (εn, 0, . . . , 0)T est un bruit blanc fort p-vectoriel, Φn = (Xn, . . . , Xn−p+1)
T avec

Φ0 pour valeur initiale et où le processus admet Cθ comme matrice compagnon (telle
que définie dans l’introduction) perturbée par Nn−1Dα + Nn contenant des éléments de
la forme αi ηi, n−1 + ηi, n sur sa première ligne, pour 1 ⩽ i ⩽ p. En somme, chaque
composante de θn est perturbée par un MA(1). Nos conclusions sont essentiellement les
mêmes dans ce contexte, à savoir que, sous des hypothèses adéquates, l’estimateur des
moindres carrés n’est pas consistant mais qu’il converge vers une valeur limite satisfaisant
θ∗ = θ + δ avec α = 0 ⇒ δ = 0 et qu’il reste asymptotiquement normal autour de θ∗.
Plus problématique, on montre aussi qu’en général θi = 0 ̸⇒ θ∗i = 0 (1 ⩽ i ⩽ p) et
précisément, pour mettre en évidence l’influence néfaste de la présence d’autocorrélation
dans les coefficients, un exemple est spécifiquement construit et illustré en simulations
dans lequel on pose θ2, n = 0 p.s. On explique et on observe que le test de significativité
de H0 : “θ2 = 0” contre H1 : “θ2 ̸= 0” doit être majoritairement rejeté en raison d’une
autocorrélation dans θ1, n induisant θ∗2 ̸= 0 (voir par exemple la Figure 1.1 issue de Pröıa et
Soltane (2021)). Dans ce cas, la relation détectée entre Xn et Xn−2 pourrait être qualifiée
de fallacieuse. Les outils techniques utilisés dans ces travaux sont aussi issus de la théorie
asymptotique des martingales.

Figure 1.1 – Distribution empirique de deux statistiques de test de H0 : “θ2 = 0”
(N = 10000 répétitions de taille n = 500), avec coefficients aléatoires (bleu) et sans
coefficients aléatoires (vert). Ici, θ1 = 0.3, θ2 = α2 = τ2, 2 = 0, et α1 ∈ {−0.5, 0, 0.3} de
gauche à droite. La courbe en rouge est la densité théorique N (0, 1).

Perspectives

Lorsque p = 1, certaines facilités nous donnent accès à un estimateur corrigé, forte-
ment consistant et asymptotiquement normal pour le couple (θ, α), c’est en particulier
ce qui nous permet d’en déduire un test de corrélation dans les coefficients aléatoires.
Pour p > 1, on peut voir que ce problème n’est pas encore résolu en raison de la com-
plexité calculatoire, sans même envisager des structures de dépendance plus évoluées que
les mémoires finies. Si l’on connâıt le comportement asymptotique de l’estimation, en
revanche on ne sait pas encore estimer θ et α de manière consistante, étape qui pourtant
parâıt nécessaire pour aboutir à un test similaire au précédent. Par ailleurs ces études ne
sont valables qu’en cas de stationnarité, mais par analogie avec la section précédente qui
traitait des processus quasi-instables, il pourrait être intéressant de suivre la piste d’un
modèle à coefficients aléatoires dont la distribution place la dynamique sur la frontière de
la non-stationnarité ou dans son voisinage, afin de mettre en lumière ce que deviennent
les problématiques de racines unitaires lorsque les coefficients sont aléatoires sans pour
autant être des bruits blancs.
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A TEST OF CORRELATION IN THE RANDOM COEFFICIENTS
OF AN AUTOREGRESSIVE PROCESS

FRÉDÉRIC PROÏA AND MARIUS SOLTANE

Abstract. A random coefficient autoregressive process is deeply investigated in
which the coefficients are correlated. First we look at the existence of a strictly
stationary causal solution, we give the second-order stationarity conditions and
the autocorrelation function of the process. Then we study some asymptotic
properties of the empirical mean and the usual estimators of the process, such
as convergence, asymptotic normality and rates of convergence, supplied with the
appropriate assumptions on the driving perturbations. Our objective is to get an
overview of the influence of correlated coefficients in the estimation step, through
a simple model. In particular, the lack of consistency is shown for the estimation
of the autoregressive parameter when the independence hypothesis is violated in
the random coefficients. Finally, a consistent estimation is given together with
a testing procedure for the existence of correlation in the coefficients. While
convergence properties rely on the ergodicity, we use a martingale approach to
reach most of the results.

Notations and conventions. In the whole paper, Ip is the identity matrix of order
p, [v]i refers to the i–th element of any vector v and Mi to the i–th column of any
matrix M . In addition, ρ(M) is the spectral radius of any square matrix M , M ◦N
is the Hadamard product between matrices M and N , and ln+x = max(lnx, 0). We
make the conventions

∑
∅ = 0 and

∏
∅ = 1. Symbols o(·) and O(·) with regard

to random sequences will be repeatedly used in the same way as applied to real-
valued functions: as n→ +∞, for some positive deterministic rate (vn), Xn = o(vn)
a.s. means that Xn/vn converges almost surely to 0 whereas Xn = O(vn) a.s.
means, in the terminology of [9], that for almost all ω, Xn(ω) = O(vn), that is
|Xn(ω)| ≤ C(ω) vn for some finite C(ω) ≥ 0 and n ≥ N(ω).

1. Introduction and Motivations

In the econometric field, nonlinear time series are now very popular. Our interest
lies in some kind of generalization of the standard first-order autoregressive pro-
cess through random coefficients. The well-known random coefficient autoregressive
process RCAR(1) is defined for t ∈ Z by

Xt = (θ + ηt)Xt−1 + εt

where (εt) and (ηt) are uncorrelated white noises. Since the seminal works of Anděl
[1] and Nicholls and Quinn [16], stationarity conditions for such processes have been

Key words and phrases. RCAR process, MA process, Random coefficients, Least squares esti-
mation, Stationarity, Ergodicity, Asymptotic normality, Autocorrelation.
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2 F. PROÏA AND M. SOLTANE

widely studied under various assumptions on the moments of (εt) and (ηt). Namely,
the process was proven to be second-order stationary if θ2 + τ2 < 1 where τ2 stands
for the variance of (ηt). Quite recently, Aue et al. [3] have given necessary and suffi-
cient conditions for the existence and uniqueness of a strictly stationary solution of
the RCAR(1) process, derived from the more general paper of Brandt [6], and some
of our technical assumptions are inspired by their works. However, the flexibility
induced by RCAR processes is balanced by the absence of correlation between two
consecutive values of the random coefficient. In a time series context, this seems
somehow counterintuitive and difficult to argue. Our main objective is precisely to
show that the violation of the independence hypothesis in the coefficients, though
quite likely for a stochastic phenomenon, leads to a falsification of the whole esti-
mation procedures, and therefore of statistical interpretations. That is the reason
why we suggest in this paper an example of random coefficients having a short (fi-
nite) memory, in the form of a moving-average dynamic, for which the estimation
of the mean value shall be conducted as if they were uncorrelated. For all t ∈ Z, we
consider the first-order autoregressive process given by

(1.1) Xt = θtXt−1 + εt

where θt is a random coefficient generated by the moving-average structure

(1.2) θt = θ + α ηt−1 + ηt.

This choice of dependence pattern in the coefficients is motivated by Prop. 3.2.1
of [7] which states that any stationary process having finite memory is solution of
a moving-average structure. In other words, there exists a white noise such that
the random coefficients admit the decomposition given above, and this justifies our
interest in (1.2). We can find the foundations of a similar model in Koubkovà [14]
or in a far more general way in Brandt [6], but as we will see throughout the paper
our objectives clearly diverge. While their works concentrate on the properties of
the stationary solution, a large part of this paper focuses on inference. The set of
hypotheses that we retain is presented at the end of this introduction, and Section
2 is devoted to the existence, the uniqueness and the stationarity conditions of
(Xt). This preliminary study enables us to derive the autocorrelation function of
the process. In Section 3, the empirical mean of the process and the usual estimators
of θ and σ2 are investigated, where σ2 stands for the variance of (εt). In particular,
we establish some almost sure convergences, asymptotic normalities and rates of
convergence, and we also need some results on the fourth-order moments of the
process that we deeply examinate. The surprising corollary of these calculations is
that the estimation is not consistent for θ as soon as α 6= 0, whereas it is well-known
that consistency is preserved in the RCAR(1) process. That leads us in Section 4 to
build a consistent estimation together with its asymptotic normality, and to derive a
statistical procedure for the existence of correlation in the coefficients. In Section 5,
we finally prove our results. The estimation of RCAR processes has also been widely
addressed in the stationary case, for example by Nicholls and Quinn [15] and later
by Schick [19], using either least squares or quasi-maximum likelihood. The crucial
point in these works is the strong consistency of the estimation, whereas it appears
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CORRELATION IN THE RANDOM COEFFICIENTS 3

in our results that the introduction of correlation in the coefficients is only possible
at the cost of consistency. In a general way, our objective is to get an overview of the
influence of correlated coefficients in the estimation step through a simple model, to
open up new perspectives for more complex structures of dependence. Throughout
the paper, we will recall the well-known results related to the first-order stationary
RCAR process that are supposed to match with ours for α = 0. The reader may
find a whole survey in Nicholls and Quinn [17] and without completeness, we also
mention the investigations of [18], [13], [11], [12], [4] about inference on RCAR
processes, or the unified procedure of Aue and Horváth [2] and references inside.
For all a > 0, we note the moments

σa = E[ε a0 ] and τa = E[η a0 ].

To simplify the calculations, we consider the family of vectors given by

(1.3) U0 =




1
0
τ2


 , U1 =




0
τ2

0


 , U2 =



τ2

0
τ4


 .

A particular 3×3 matrix is used all along the study to characterize the second-order
properties of the process, it is based on {U0, U1, U2} in such a way that

(1.4) M =




θ2 + τ2 2α θ α2

2 θ τ2 2α τ2 0
θ2 τ2 + τ4 2α θ τ2 α2 τ2


 with





M1 = θ2 U0 + 2 θ U1 + U2

M2 = 2α (θ U0 + U1)
M3 = α2 U0.

Similarly, the fourth-order properties of the process rest upon the family of vectors
{V0, . . . , V4} where

(1.5) V0 =




1
0
τ2

0
τ4



, V1 =




0
τ2

0
τ4

0



, V2 =




τ2

0
τ4

0
τ6



, V3 =




0
τ4

0
τ6

0



, V4 =




τ4

0
τ6

0
τ8



.

There are used to build the 5× 5 matrix H whose columns are defined as

(1.6)





H1 = θ4 V0 + 4 θ3 V1 + 6 θ2 V2 + 4 θ V3 + V4

H2 = 4α (θ3 V0 + 3 θ2 V1 + 3 θ V2 + V3)
H3 = 6α2 (θ2 V0 + 2 θ V1 + V2)
H4 = 4α3 (θ V0 + V1)
H5 = α4 V0.

Explicitly,

H =




θ4 + 6 θ2 τ2 + τ4 4α (θ3 + 3 θ τ2) 6α2 (θ2 + τ2) 4α3 θ α4

4 θ3 τ2 + 4 θ τ4 4α (3 θ2 τ2 + τ4) 12α2 θ τ2 4α3 τ2 0
θ4 τ2 + 6 θ2 τ4 + τ6 4α (θ3 τ2 + 3 θ τ4) 6α2 (θ2 τ2 + τ4) 4α3 θ τ2 α4 τ2

4 θ3 τ4 + 4 θ τ6 4α (3 θ2 τ4 + τ6) 12α2 θ τ4 4α3 τ4 0
θ4 τ4 + 6 θ2 τ6 + τ8 4α (θ3 τ4 + 3 θ τ6) 6α2 (θ2 τ4 + τ6) 4α3 θ τ4 α4 τ4



.

48



4 F. PROÏA AND M. SOLTANE

Various hypotheses on the parameters will be required (not always simultaneously)
throughout the study, closely related to the distribution of the perturbations.

(H1) The processes (εt) and (ηt) are mutually independent strong white noises such
that E[ln+|ε0|] <∞ and E[ln |θ + α η0 + η1|] < 0.

(H2) σ2k+1 = τ2k+1 = 0 for any k ∈ N such that the moments exist.
(H3) σ2 > 0, τ2 > 0, σ2 <∞, τ4 <∞ and ρ(M) < 1.
(H4) σ4 <∞, τ8 <∞ and ρ(H) < 1.
(H5) There exists continuous mappings g and h such that σ4 = g(σ2) and τ4 = h(τ2).

Remark 1.1. Clearly, (H2) can be replaced by the far less restrictive natural condi-
tion σ1 = τ1 = 0. Considering that all existing odd moments of (εt) and (ηt) are zero
is only a matter of simplification of the calculations, that are already quite tricky to
conduct. An even more general (and possible) study must include the contributions
of σ3, τ3, τ5 and τ7 in the whole calculations.

Remark 1.2. (H5) is satisfied in the centered Gaussian case with g(t) = h(t) =
3 t2. It is also satisfied for most of the distributions used to drive the noise of
regression models (centered uniform, Student, Laplace, etc.). Nevertheless, it is a
strong assumption only used at the end of the study.

Short explanations of the remarks appearing in Sections 2 and 3 are given at the
beginning of Section 5.

2. Stationarity and Autocorrelation

It is well-known and easy to establish that the sequence of coefficients (θt) given
by (1.2) is a strictly stationary and ergodic process with mean θ and autocovariance
function given by

γθ(0) = τ2 (1 + α2), γθ(1) = α τ2 and γθ(h) = 0 (|h| > 1).

Clearly, any solution of (1.1) satisfies a recurrence equation, and the first result to
investigate is related to the existence of a causal, strictly stationary and ergodic
solution.

Theorem 2.1. Assume that (H1) holds. Then almost surely, for all t ∈ Z,

(2.1) Xt = εt +
∞∑

k=1

εt−k

k−1∏

`=0

(θ + α ηt−`−1 + ηt−`).

In addition, (Xt) is strictly stationary and ergodic.

Proof. See Section 5.2. �
By extension, the same kind of conclusions may be obtained on any process

(ε at η
b
t X

c
t ) for a, b, c ≥ 0, assuming suitable conditions of moments. As a corol-

lary, it will be sufficient to work on E[ε at η
b
t X

c
t ] in order to identify the asymptotic

behavior (for n→∞) of empirical moments like

1

n

n∑

t=1

ε at η
b
t X

c
t .
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CORRELATION IN THE RANDOM COEFFICIENTS 5

According to the causal representation of the above theorem, the process is adapted
to the filtration defined as

(2.2) Ft = σ((εs, ηs), s ≤ t).

We are now interested in the existence of the second-order properties of the process,
under some additional hypotheses. We derive below its autocorrelation function
using the previous notations and letting

(2.3) N =




θ α 0
τ2 0 0
θ τ2 α τ2 0


 with





N1 = θ U0 + U1

N2 = αU0

N3 = 0,

and we take advantage of the calculations to guarantee the unicity of the second-
order stationary solution.

Theorem 2.2. Assume that (H1)–(H3) hold. Then, (Xt) is a strictly and second-
order stationary process with mean zero and autocovariance function given by

(2.4) γX(h) = σ2

[
N |h | (I3 −M)−1 U0

]
1

for h ∈ Z. Its autocorrelation function is defined as

(2.5) ρX(h) =
γX(h)

γX(0)
.

In addition, this is the unique causal ergodic strictly and second-order stationary
solution.

Proof. See Section 5.3. �
Remark 2.1. Suppose that the process is stationary with second-order moments
such that the parameters satisfy 2α τ2 = 1. Then, (2.4) leads to γX(0) = 0, meaning
that (Xt) is a deterministic process. This case is naturally excluded from the study,
just like σ2 = 0 leading to the same conclusion.

Remark 2.2. For α = 0, the set of eigenvalues of M is {θ2 + τ2, 0, 0}. Thus, the
assumption ρ(M) < 1 reduces to θ2 + τ2 < 1, which is a well-known result for the
stationarity of RCAR(1) processes.

3. Empirical mean and Usual estimation

Assume that a time series (Xt) generated by (1.1)–(1.2) is observable on the
interval t ∈ {0, . . . , n}, for n ≥ 1. We additionally suppose that X0 has the strictly
stationary and ergodic distribution of the process.

Remark 3.1. Making the assumption that X0 has the strictly stationary and ergodic
distribution of the process is only a matter of simplification of the calculations. To
be complete, assume that (Yt) is generated by the same recurrence with initial value
Y0. Then for all t ≥ 1,

Xt − Yt = (X0 − Y0)
t∏

`=1

(θ + α η`−1 + η`).
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6 F. PROÏA AND M. SOLTANE

For a sufficiently large t and letting κ = E[ln |θ + α η0 + η1|] < 0, it can be shown
(see Section 5.1 for details) that, almost surely,

|Xt − Yt| ≤ |X0 − Y0| e
κ t
2 .

Then Y0 could by any random variable satisfying |X0 − Y0| <∞ a.s. and having at
least as many moments as X0.

Denote the sample mean by

(3.1) X̄n =
1

n

n∑

t=1

Xt.

Then, we have the following result, where the asymptotic variance κ2 will be explic-
itly given in (5.18).

Theorem 3.1. Assume that (H1)–(H2) hold. Then as n tends to infinity, we have
the almost sure convergence

(3.2) X̄n
a.s.−→ 0.

In addition, if (H3) also holds, we have the asymptotic normality

(3.3)
√
n X̄n

D−→ N (0, κ2).

Proof. See Section 5.4. �
Remark 3.2. For α = 0, our calculations lead to

(3.4) κ2
0 =

σ2 (1− θ2)

(1− θ)2(1− θ2 − τ2)
.

If in addition τ2 = 0, we find that

(3.5) κ2
00 =

σ2

(1− θ)2

which is a result that can be deduced from Thm. 7.1.2 of [7].

Now, consider the estimator given by

(3.6) θ̂n =

∑n
t=1Xt−1Xt∑n
t=1X

2
t−1

.

It is essential to be well aware that θ̂n is not the OLS estimate of θ as soon as α 6= 0.
This choice of estimate is a consequence of our objectives : to show that an OLS
estimation of θ in a standard RCAR(1) model may lead to inappropriate conclusions
(due to correlation in the coefficients). Indeed, we shall see in this section that it
is not consistent for α 6= 0, and we will provide its limiting value. We will also
establish that it remains asymptotically normal. This estimator will be described
as the usual one afterwards. Denote by

(3.7) θ∗ =
θ

1− 2α τ2

and recall that 2α τ2 6= 1. The asymptotic variance ω2 in the central limit theorem
will be built step by step in Section 5.5 and given in (5.39).
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CORRELATION IN THE RANDOM COEFFICIENTS 7

Theorem 3.2. Assume that (H1)–(H3) hold. Then as n tends to infinity, we have
the almost sure convergence

(3.8) θ̂n
a.s.−→ θ∗.

In addition, if (H4) holds, we have the asymptotic normality

(3.9)
√
n
(
θ̂n − θ∗

) D−→ N (0, ω2).

Proof. See Section 5.5. �
Remark 3.3. For α = 0, θ∗ = θ and, as it is well-known, the estimation is con-
sistent for θ. In addition, the coefficients matrix K defined in (A.4) takes the very
simplified form where each term is zero except K11 = σ2 and K22 = τ2. Similarly,
only the first columns of M and H are nonzero. Then, letting λ0 = E[X2

t ] = γX(0)
and δ0 = E[X4

t ] as in the associated proof, the asymptotic variance is now

ω2
0 =

σ2

λ0

+
τ2 δ0

λ2
0

.

One can check that this is a result of Thm. 4.1 in [15], in the particular case of the
RCAR(1) process but under more natural hypotheses (they assume that E[X4

t ] <∞
while we derive it from some moments conditions on the noises). Explicitly, it is
given by

(3.10) ω2
0 =

(1− θ2 − τ2) (τ2 σ4 (θ2 + τ2 − 1) + σ2
2 (θ4 + τ4 − 6 τ 2

2 − 1))

σ2
2 (θ4 + τ4 + 6 θ2 τ2 − 1)

.

If in addition τ2 = τ4 = 0, we find that

(3.11) ω2
00 = 1− θ2

which is a result stated in Prop. 8.10.1 of [7], for example.

Remark 3.4. For α = 0, the set of eigenvalues of H is {θ4 + 6 θ2 τ2 + τ4, 0, 0, 0, 0}.
Thus, the assumption ρ(H) < 1 reduces to θ4 + 6 θ2 τ2 + τ4 < 1, which may be seen
as a condition of existence of fourth-order moments for the RCAR(1) process.

Theorem 3.3. Assume that (H1)–(H4) hold. Then as n tends to infinity, we have
the rates of convergence

(3.12)
1

lnn

n∑

t=1

(
θ̂t − θ∗

)2 a.s.−→ ω2

and

(3.13) lim sup
n→+∞

n

2 ln lnn

(
θ̂n − θ∗

)2
= ω2 a.s.

Proof. See Section 5.6. �
Remark 3.5. The above theorem leads to the usual rate of convergence for the
estimation of parameters driving stable models,

(3.14)
(
θ̂n − θ∗

)2
= O

(
ln lnn

n

)
a.s.
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8 F. PROÏA AND M. SOLTANE

Remark 3.6. Even if it is of reduced statistical interest, the same rates of conver-
gence may be reached for X̄n.

Finally we build the residual set given, for all 1 ≤ t ≤ n, by

(3.15) ε̂t = Xt − θ̂nXt−1.

The usual estimator of σ2 is defined as

(3.16) σ̂2,n =
1

n

n∑

t=1

ε̂ 2
t .

Denote by

(3.17) σ∗2 =
(
1− (θ∗)2

)
γX(0).

Theorem 3.4. Assume that (H1)–(H3) hold. Then as n tends to infinity, we have
the almost sure convergence

(3.18) σ̂2,n
a.s.−→ σ∗2.

Proof. By ergodicity, the development of σ̂2,n in (3.16) leads to

σ̂2,n
a.s.−→

(
1 + (θ∗)2

)
γX(0)− 2 θ∗ γX(1).

But the definition of θ̂n in (3.6) also implies γX(1) = θ∗ γX(0), leading to σ∗2. �
Remark 3.7. For α = 0, (3.17) becomes

(3.19) σ∗2,0 =
σ2 (1− θ2)

1− θ2 − τ2

.

In their work, Nicholls and Quinn [15] have taken into consideration the fact that
this estimator of σ2 was not consistent, that is the reason why they suggested a
modified estimator that we will take up in the next section. Now if τ2 = 0, we reach
the well-known consistency.

4. A test for correlation in the coefficients

We now apply a Yule-Walker approach up to the second-order autocorrelation.
Using the notations of Theorem 2.2 and letting γ = α τ2,

{
(1− 2 ρ2

X(1)) θ = (1− 2 ρX(2)) ρX(1)
(1− 2 ρ2

X(1)) γ = ρX(2)− ρ2
X(1).

By ergodicity, a consistent estimation of θ∗ = ρX(1) and ϑ∗ = ρX(2) is achieved via

(4.1) θ̂n =

∑n
t=1 Xt−1Xt∑n
t=1X

2
t−1

and ϑ̂n =

∑n
t=2 Xt−2Xt∑n
t=2X

2
t−2

respectively. We define the mapping from [−1 ; 1]\{± 1√
2
} × [−1 ; 1] to R2 as

(4.2) f : (x, y) 7→
(

(1− 2y)x

1− 2x2
,
y − x2

1− 2x2

)
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CORRELATION IN THE RANDOM COEFFICIENTS 9

and the new couple of estimates

(4.3) (θ̃n, γ̃n) = f(θ̂n, ϑ̂n).

To be consistent with (4.2), we assume in the sequel that
√

2 θ 6= ±(1 − 2α τ2).
We also assume that ψ 0

0 6= 0, where ψ 0
0 is described below. Since it seems far too

complicated, we do not give any reduced form to the latter hypothesis, instead we
gather in Θ∗ = {

√
2 θ = ±(1 − 2α τ2)} ∪ {ψ 0

0 = 0} the pathological cases and we
pick the parameters outside Θ∗ to conclude our study. It obviously follows that

θ̃n
a.s.−→ θ and γ̃n

a.s.−→ γ. In the following theorem, we establish the asymptotic
normality of these new estimates, useful for the testing procedure. We denote by
∇f the Jacobian matrix of f .

Theorem 4.1. Assume that (H1)–(H4) hold. Then as n tends to infinity, we have
the asymptotic normality

(4.4)
√
n

(
θ̃n − θ
γ̃n − γ

)
D−→ N (0,Ψ)

where Σ is a covariance given in (5.56) and

(4.5) Ψ = ∇Tf(θ∗, ϑ∗) Σ∇f(θ∗, ϑ∗).

Proof. See Section 5.7. �

Assuming random coefficients (that is, τ2 > 0), note that γ = 0 ⇔ α = 0. Our
last objective is to build a testing procedure for

(4.6) H0 : “α = 0” vs H1 : “α 6= 0”.

As it is explained in Remark 5.1, despite its complex structure, Ψ only depends on
the parameters. Let ψ = ψ(θ, α, {τk}2,4,6,8, {σ`}2,4) be the the lower right element
of Ψ, and ψ 0 = ψ(θ, 0, {τk}2,4,6,8, {σ`}2,4). The explicit calculation under H0 gives
θ∗ = θ, ϑ∗ = θ2 and

(4.7) ψ 0 =
ψ 0

0

(1− 2 θ2)2 σ2
2 (θ4 + 6 θ2 τ2 + τ4 − 1)

where the numerator is given by

ψ 0
0 = (τ2 + θ2 − 1)

[
σ4 τ2 ((6 θ2 − 1) τ 2

2 + (8 θ4 − 9 θ2 + 1) τ2

+ 2 θ2 (θ2 − 1)2) + σ2
2 τ2 (−36 τ 2

2 θ
2 + 6 τ 2

2 − 12 τ2 θ
4

+ 12 τ2 θ
2 − 6 θ6 + 17 θ4 + 6 τ4 θ

2 − 12 θ2 − τ4 + 1)

+ σ2
2 (θ6 − θ4 + θ2 τ4 − θ2 − τ4 + 1)

]

and assumed to be nonzero (by excluding Θ∗). As a corollary, ψ 0 continuously de-
pends on the parameters under our additional hypothesis (see Remark 3.4). Suppose
also that (H5) holds, so that ψ 0 = ψ 0(θ, τ2, σ2), and consider

ψ̂ 0
n = ψ 0(θ̄n, τ̄2,n, σ̄2,n)
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where θ̄n is either θ̂n or θ̃n, and (τ̄2,n, σ̄2,n) is the couple of estimates suggested by
[15] in formulas (3.6) and (3.7) respectively, also given in [13]. They are defined as

(4.8) τ̄2,n =

∑n
t=1(Zt − Z̄n) ε̂ 2

t∑n
t=1(Zt − Z̄n)2

and σ̄2,n = σ̂2,n − Z̄n τ̄2,n

where (ε̂t) is the residual set built in (3.15), σ̂2,n is given in (3.16) and for t ∈
{1, . . . , n}, Zt = X2

t . Thm. 4.2 of [15] gives their consistency as soon as the
RCAR(1) process has fourth-order moments. Furthermore, our study gives the
consistency of θ̄n under H0. We deduce from Slutsky’s lemma that

(4.9) ψ̂ 0
n

a.s.−→ ψ 0 > 0 and
n
(
γ̃n
)2

ψ̂ 0
n

D−→ χ2
1

if H0 is true, where χ2
1 has a chi-square distribution with one degree of freedom,

whereas under H1 the test statistic diverges (almost surely). The introduction of
(H5) enables to choose

σ̄4,n = g(σ̄2,n) and τ̄4,n = h(τ̄2,n)

as consistent estimations of the related moments. Comparing the test statistic with
the quantiles of χ2

1 may constitute the basis of a test for the existence of correlation
in the random coefficients of an autoregressive process. To conclude, we have shown
through this simple model that the introduction of correlation in the coefficients is
a significative issue in relation to the inference procedure. And yet, in a time series
context it seems quite natural to take account of autocorrelation in the random co-
efficients, this is an incitement to put statistical conclusions into perspective dealing
with estimation and testing procedures of RCAR models. The most challenging
extensions for future studies seem to rely on more complex dependency structures
in the coefficients, on the consideration of more autoregressions in the model, and
of course on the behavior of the process under instability and unit root issues. The
testing procedure for correlation in the random coefficients should also be studied
on an empirical basis, this is an ongoing investigation.

Acknowledgments. The authors thank the Associate Editor and the anonymous
Reviewer for the suggestions and very constructive comments which helped to im-
prove substantially the paper.

5. Proofs of the main results

In this section, we develop the whole proofs of our results. The fundamental tools
related to ergodicity may be found in Thm. 3.5.8 of [21] or in Thm. 1.3.3 of [22].
We will repeatedly have to deal with E[η at (θ+ ηt)

b] for a, b ∈ {0, . . . , 4}, so we found
useful to summarize beforehand the associated values under (H2) in Table 1 below.
For the sake of clarity, we postpone to the appendix the numerous constants that
will be used thereafter. We start by giving some short explanations related to the
remarks appearing in Sections 2 and 3.

5.1. About the remarks of Sections 2 and 3.
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a\b 0 1 2 3 4
0 1 θ θ2 + τ2 θ3 + 3 θ τ2 θ4 + 6 θ2 τ2 + τ4

1 0 τ2 2 θ τ2 3 θ2 τ2 + τ4 4 θ3 τ2 + 4 θ τ4

2 τ2 θ τ2 θ2 τ2 + τ4 θ3 τ2 + 3 θ τ4 θ4 τ2 + 6 θ2 τ4 + τ6

3 0 τ4 2 θ τ4 3 θ2 τ4 + τ6 4 θ3 τ4 + 4 θ τ6

4 τ4 θ τ4 θ2 τ4 + τ6 θ3 τ4 + 3 θ τ6 θ4 τ4 + 6 θ2 τ6 + τ8

Table 1. E[η at (θ + ηt)
b] for a, b ∈ {0, . . . , 4}.

5.1.1. Remark 2.1. Indeed, the explicit calculation of γX(0) based on (2.4) leads to

γX(0) =
σ2 (2α τ2 − 1)

d(θ, α, τ2, τ4)

for some denominator satisfying d(θ, α, τ2, τ4) = 2 θ2 when 2α τ2 = 1. It follows that
should this assumption be true under second-order stationarity, the process would
be deterministic.

5.1.2. Remark 3.1. The objective here is to show that the difference between the
process starting at X0 having the strictly stationary and ergodic distribution and the
same process starting at some Y0 is (a.s.) negligible provided very weak assumptions
on Y0. Following the idea of Lem. 1 in [3] and using the ergodic theorem, we obtain
that for a sufficiently large t, almost surely

1

t

t∑

`=1

ln |θ + α η`−1 + η`| ≤
κ

2
< 0.

Hence, the asymptotic decrease of
∏t

`=1 |θ+ α η`−1 + η`| is exponentially fast with t

under (H1) and the upper bound of |Xt− Yt| ≤ |X0− Y0| e
κ t
2 enables to retain weak

assumptions on Y0 so that Xt − Yt = o(1) a.s.

5.1.3. Remark 3.2. In the particular case where α = τ2 = 0 (that is, in the stable
AR(1) process), Thm. 7.1.2 of [7] states that

√
n X̄n is asymptotically normal with

mean 0 and variance given by

∑

h∈Z
γX(h) = σ2

( +∞∑

k=0

θk
)2

=
σ2

(1− θ)2
.

Thus, κ2
00 implied by our results is coherent from that point of view.

5.1.4. Remark 3.3. Like in the previous remark, Prop. 8.10.1 of [7] states that, for
α = τ2 = 0, the OLS estimator of θ is asymptotically normal with rate

√
n, mean

0 and variance given by 1− θ2, which corresponds to ω2
00. Now if τ2 > 0, Thm. 4.1

of [15], and especially formula (4.1), gives the asymptotic variance as a function of
E[X2

t ] and E[X4
t ] as detailed in Rem. 3.3. Our study enables to identify ω2

0 as a
function of the parameters by injecting α = 0 into λ0 and δ0 that are computed in
(5.10) and (5.30), respectively.
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5.2. Proof of Theorem 2.1. The existence of the almost sure causal representation
of (Xt) under (H1) is a corollary of Thm. 1 of [6]. Indeed, (θt) is a stationary and
ergodic MA(1) process independent of (εt), itself obviously stationary and ergodic.
Let us give more details. First, hypotheses (H1) enable to make use of the same
proof as [3] where the ergodic theorem replaces the strong law of large numbers to
reach formula (6), and to establish that (2.1) is the limit of a convergent series (with
probability 1). Then for all t ∈ Z,

θtXt−1 = (θ + α ηt−1 + ηt)

[
εt−1 +

∞∑

k=1

εt−k−1

k−1∏

`=0

(θ + α ηt−`−2 + ηt−`−1)

]

=
∞∑

k=1

εt−k

k−1∏

`=0

(θ + α ηt−`−1 + ηt−`) = Xt − εt

meaning that (2.1) is a solution to the recurrence equation. Finally, the strict
stationarity and ergodicity of (Xt) may be obtained following the same reasoning as
in [15]. Indeed, the causal representation (2.1) shows that there exists φ independent
of t such that for all t ∈ Z,

Xt = φ((εt, ηt), (εt−1, ηt−1), . . .).

The set ((εt, ηt), (εt−1, ηt−1), . . .) being made of independent and identically dis-
tributed random vectors, (Xt) is strictly stationary. The ergodicity follows from
Thm. 1.3.3 of [22]. �

5.3. Proof of Theorem 2.2. Ergodicity and strict stationarity come from Theorem
2.1. We consider the causal representation (2.1). First, since (εt) and (ηt) are
uncorrelated white noises, for all t ∈ Z,

(5.1) E[Xt] = 0.

To establish the autocovariance function of (Xt), we have beforehand to establish
a technical lemma related to the second-order properties of the process. For all
k, h ∈ N∗, consider the sequence

u
(a)
0,h = E[ηah θh . . . θ1],

u
(a)
k,0 = E[ηak θ

2
k . . . θ

2
1],

u
(a)
k,h = E[ηak+h θk+h . . . θk+1 θ

2
k . . . θ

2
1],

where a ∈ {0, 1, 2}, and build

(5.2) Uk,h =



u

(0)
k,h

u
(1)
k,h

u
(2)
k,h


 .

Thereafter, M , N and U0 refer to (1.4), (2.3) and (1.3), respectively.

Lemma 5.1. Assume that (H1)–(H3) hold. Then, for all h, k ∈ N,

(5.3) Uk,h = NhMk U0
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with the convention that U0,0 = U0.

Proof. In the whole proof, (Ft) is the filtration defined in (2.2) and Table 1 may
be read to compute the coefficients appearing in the calculations. The coefficients
θk+h−1, θk+h−2, . . . are Fk+h−1–measurable. Hence for h ≥ 1,

u
(0)
k,h = E[θk+h−1 . . . θk+1 θ

2
k . . . θ

2
1 E[θk+h | Fk+h−1]]

= θ u
(0)
k,h−1 + αu

(1)
k,h−1,

u
(1)
k,h = E[θk+h−1 . . . θk+1 θ

2
k . . . θ

2
1 E[ηk+h θk+h | Fk+h−1]]

= τ2 u
(0)
k,h−1,

u
(2)
k,h = E[θk+h−1 . . . θk+1 θ

2
k . . . θ

2
1 E[η2

k+h θk+h | Fk+h−1]]

= θ τ2 u
(0)
k,h−1 + α τ2 u

(1)
k,h−1.

We get the matrix formulation Uk,h = N Uk,h−1. It follows that, for h ∈ N,

(5.4) Uk,h = Nh Uk,0.

The next step is to compute Uk,0, and we will use the same lines. For k ≥ 1,

u
(0)
k,0 = E[θ2

k−1 . . . θ
2
1 E[θ2

k | Fk−1]]

= (θ2 + τ2)u
(0)
k−1,0 + 2α θ u

(1)
k−1,0 + α2 u

(2)
k−1,0,

u
(1)
k,0 = E[θ2

k−1 . . . θ
2
1 E[ηk θ

2
k | Fk−1]]

= 2 θ τ2 u
(0)
k−1,0 + 2α τ2 u

(1)
k−1,0,

u
(2)
k,0 = E[θ2

k−1 . . . θ
2
1 E[η2

k θ
2
k | Fk−1]]

= (θ2 τ2 + τ4)u
(0)
k−1,0 + 2α θ τ2 u

(1)
k−1,0 + α2 τ2 u

(2)
k−1,0.

Thus, (5.4) becomes

Uk,h = NhMk−1 U1,0

where the initial vector U1,0 is given by

u
(0)
1,0 = E[θ2

1] = (θ2 + τ2) + α2 τ2,

u
(1)
1,0 = E[η1 θ

2
1] = 2 θ τ2,

u
(2)
1,0 = E[η2

1 θ
2
1] = (θ2 τ2 + τ4) + α2 τ 2

2 .

It is then not hard to conclude that, for all k ∈ N∗ and h ∈ N,

Uk,h = NhMk U0.

For k = 0, a similar calculation based on the initial values u
(a)
0,h for a ∈ {0, 1, 2} leads

to U0,h = Nh U0, implying that (5.3) holds for all k, h ∈ N. �
Corollary 5.1. Assume that (H1)–(H3) hold. Then, the second-order properties of
(Xt) are such that, for all a ∈ {0, 1, 2},

E[ηat X
2
t ] <∞.
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Proof. For all t ∈ Z and k ≥ 1, denote by

(5.5) Λt =




1
ηt
η2
t


 and Pt, k =

k−1∏

i=0

θt−i

with Pt, 0 = 1. Since (εt) and (ηt) are uncorrelated white noises, using the causal
representation (2.1) and letting h = 0,

E[ΛtX
2
t ] =

∞∑

k=0

∞∑

`=0

E[Λt Pt, k Pt, ` εt−k εt−`] = σ2

∞∑

k=0

Mk U0 = σ2 (I3 −M)−1 U0

as a consequence of the strict stationarity of (θt). We remind that, under (H3), it is
well-known (see e.g. [10]) that I3 −M is invertible and that

∞∑

k=0

Mk = (I3 −M)−1.

�
Let us return to the proof of Theorem 2.2. From Lemma 5.1 and Corollary 5.1,

we are now able to evaluate the autocovariance function of (Xt). For h ∈ N,

Cov(Xt, Xt−h) =
∞∑

k=0

∞∑

`=0

E[Pt, k Pt−h, ` εt−k εt−h−`].

We get

γX(h) = σ2

∞∑

k=0

E[Pt, k+h Pt−h, k] = σ2

(
E[Pt, h] +

∞∑

k=1

u
(0)
k,h

)
= σ2

[ ∞∑

k=0

Uk,h

]
1
.

From Lemma 5.1,
γX(h) = σ2

[
Nh (I3 −M)−1 U0

]
1
.

We conclude using the fact that γX does not depend on t. For all t ∈ Z and h ∈ N,
γX(h) = Cov(Xt−h, Xt) = Cov(Xt, Xt+h), which shows that the above reasoning still
holds for h ∈ Z, replacing h by |h|. Now suppose that (Wt) is another causal ergodic
strictly and second-order stationary solution. There exists ϕ independent of t such
that for all t ∈ Z,

Xt −Wt = ϕ((εt, ηt), (εt−1, ηt−1), . . .)

and necessarily, (Xt −Wt) is also a strictly stationary process having second-order
moments. Let e(a) = E[ηat (Xt −Wt)

2], for a ∈ {0, 1, 2}. From the same calculations
and exploiting the second-order stationarity of (Xt −Wt), it follows that



e(0)

e(1)

e(2)


 = M



e(0)

e(1)

e(2)




implying, if (e(0) e(1) e(2)) 6= 0, that 1 is an eigenvalue of M . Clearly, this contradicts
ρ(M) < 1 which is part of (H3). Thus, E[(Xt−Wt)

2] must be zero and Xt = Wt a.s.
�
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5.4. Proof of Theorem 3.1. The convergence to zero is only the application of
the ergodic theorem, since we have seen in (5.1) that E[Xt] = 0. Here, only (H1)
and (H2) are needed. We make the following notations,

M̄ (1)
n =

n∑

t=1

Xt−1

(
(1 + α θ) ηt + α (η2

t − τ2)
)
,

M̄ (2)
n = α2

n∑

t=1

ηt−1Xt−1 ηt,

M̄ (3)
n =

n∑

t=1

(1 + α ηt) εt.

Consider the filtration (F ∗n ) generated by F ∗0 = σ(X0, η0) and, for n ≥ 1, by

(5.6) F ∗n = σ(X0, η0, (ε1, η1), . . . , (εn, ηn))

and let

(5.7) M̄n =



M̄

(1)
n

M̄
(2)
n

M̄
(3)
n


 .

Under our hypotheses, M̄n is a locally square-integrable real vector (F ∗n )–martingale.
We shall make use of the central limit theorem for vector martingales given e.g. by
Cor. 2.1.10 of [9]. On the one hand, we have to study the asymptotic behavior of
the predictable quadratic variation of M̄n. For all n ≥ 1, let

(5.8) 〈M̄〉n =
n∑

t=1

E
[
(∆M̄t)(∆M̄t)

T | F ∗t−1

]
,

with ∆M̄1 = M̄1. To simplify the calculations, we introduce some more notations.
The second-order moments of the process are called

(5.9) E[ΛtX
2
t ] =



λ0

λ1

λ2


 = Λ

where Λt is given in (5.5), with λ0 = γX(0). We use the strict stationarity to
establish, following Corollary 5.1 under the additional (H3) hypothesis, that

(5.10) Λ = σ2 (I3 −M)−1 U0

and ergodicity immediately leads to

(5.11)
1

n

n∑

t=1

ΛtX
2
t

a.s.−→ Λ.

Now, we are going to study the asymptotic behavior of 〈M̄〉n/n. First, under our
assumptions,

〈M̄ (1), M̄ (3)〉n = 〈M̄ (2), M̄ (3)〉n = 0.
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16 F. PROÏA AND M. SOLTANE

Since the other calculations are very similar we only detail the first one,

〈M̄ (1)〉n =
n∑

t=1

X 2
t−1 E

[(
(1 + α θ) ηt + α (η2

t − τ2)
)2]

=
(
(1 + α θ)2 τ2 + α2 (τ4 − τ 2

2 )
) n∑

t=1

X 2
t−1.

We obtain using K̄ in (A.2) that

(5.12) 〈M̄〉n = K̄ ◦
n∑

t=1




X2
t ηtX

2
t 0

ηtX
2
t η2

t X
2
t 0

0 0 1


+ R̄n

where the Hadamard product ◦ is used to lighten the formula, and where the re-
mainder R̄n is made of isolated terms such that, from (5.11),

(5.13)
R̄n

n

a.s.−→ 0.

We reach these results by computing 〈M̄ (i), M̄ (j)〉n for i, j ∈ {1, 2, 3} just as we have
done above for some of them, and then by normalizing each sum, leaving the isolated
terms in the remainder. For example,

n∑

t=1

X 2
t−1 =

n∑

t=1

X 2
t + (X2

0 −X 2
n ).

It is then a direct application of the ergodic theorem that gives the O(n) behavior of
the sums (and the o(n) behavior of the isolated terms as a consequence), and that
enables to identify, by combining (5.11), (5.12) and (5.13), the limiting value

(5.14)
〈M̄〉n
n

a.s.−→ K̄ ◦ Γ̄

where Γ̄ is given by

(5.15) Γ̄ =



λ0 λ1 0
λ1 λ2 0
0 0 1


 .

On the other hand, it is necessary to prove that the Lindeberg’s condition is satisfied,
namely that for all ε > 0,

(5.16)
1

n

n∑

t=1

E
[
‖∆M̄t‖2 I{‖∆M̄t‖≥ ε

√
n} | F ∗t−1

] P−→ 0

as n tends to infinity. By ergodicity and strict stationarity of the increments (∆M̄t)
under the assumption on X0, it follows that for any M > 0,

1

n

n∑

t=1

E
[
‖∆M̄t‖2 I{‖∆M̄t‖≥M} | F ∗t−1

] a.s.−→ E
[
‖∆M̄1‖2 I{‖∆M̄1‖≥M}

]
.
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Corollary 5.1 implies that E[‖∆M̄1‖2] < ∞ and the right-hand side can be made
arbitrarily small, which establishes the Lindeberg’s condition. From (5.14) and
(5.16), we deduce that

(5.17)
M̄n√
n

D−→ N (0, K̄ ◦ Γ̄)

which is nothing but the central limit theorem for vector martingales, as intended.
One can notice that the above reasoning is in fact a vector extension of the main
result of [5], related to the central limit theorem for martingales having ergodic and
stationary increments. Finally, by a tedious but straightforward calculation, one
can obtain that

√
n X̄n =

ΩT
3 M̄n + r̄n

(1− θ − α τ2)
√
n

where ΩT
3 = (1 1 1) and r̄n = o(

√
n) a.s. from (5.11). It remains to apply Slutsky’s

lemma to conclude that √
n X̄n

D−→ N (0, κ2)

with

(5.18) κ2 =
ΩT

3 (K̄ ◦ Γ̄) Ω3

(1− θ − α τ2)2

using the whole notations above. �

5.5. Proof of Theorem 3.2. The almost sure convergence essentially relies on the
ergodicity of the process. Theorem 2.2 together with the ergodic theorem directly
lead to

θ̂n
a.s.−→ γX(1)

γX(0)
=

[
N (I3 −M)−1 U0

]
1[

(I3 −M)−1 U0

]
1

as n tends to infinity, but we are interested in the explicit form of the limiting value.
From the combined expressions (1.1)–(1.2), it follows that

(5.19)
n∑

t=1

Xt−1Xt = θ

n∑

t=1

X 2
t−1 + α

n∑

t=1

ηt−1X
2
t−1 +

n∑

t=1

X 2
t−1 ηt +

n∑

t=1

Xt−1 εt.

We also note from Corollary 5.1 that, for all t ∈ Z,

E[ηtX
2
t ] = E[θ2

t X
2
t−1 ηt] + E[ε2

t ηt] + 2E[θtXt−1 εt ηt]

= 2α τ2 E[ηt−1X
2
t−1] + 2 θ τ2 E[X 2

t−1].

Thus, by stationarity and ergodicity,

(5.20)
1

n

n∑

t=1

ηt−1X
2
t−1

a.s.−→ 2 θ τ2 γX(0)

1− 2α τ2

.

Similarly, E[X 2
t−1 ηt] = E[Xt−1 εt] = 0 and from the ergodic theorem,

(5.21)
1

n

n∑

t=1

X 2
t−1

a.s.−→ γX(0),
1

n

n∑

t=1

X 2
t−1 ηt

a.s.−→ 0,
1

n

n∑

t=1

Xt−1 εt
a.s.−→ 0.
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The expression of θ̂n in (3.6) combined with the decomposition (5.19) and the con-
vergences (5.20) and (5.21) give

θ̂n
a.s.−→ θ +

2α θ τ2

1− 2α τ2

=
θ

1− 2α τ2

.

Let us now establish the asymptotic normality. First, we have to study the fourth-
order properties of (Xt) and some other technical lemmas are needed. For all k ∈ N∗,
consider the sequences

v
(a)
k = E[ηak θ

4
k . . . θ

4
1]

where a ∈ {0, . . . , 4}, and build

(5.22) Vk =



v

(0)
k
...

v
(4)
k


 .

For the following calculations, H is defined in (1.6) and {V0, . . . , V4} in (1.5).

Lemma 5.2. Assume that (H1)–(H4) hold. Then, for all k ∈ N,

(5.23) Vk = Hk V0.

Proof. With the filtration (Ft) defined in (2.2), for k ≥ 1,

v
(0)
k = E[θ4

k−1 . . . θ
4
1 E[θ4

k | Fk−1]]

= (θ4 + 6 θ2 τ2 + τ4) v
(0)
k−1 + 4α (θ3 + 3 θ τ2) v

(1)
k−1 + 6α2 (θ2 + τ2) v

(2)
k−1

+ 4α3 θ v
(3)
k−1 + α4 v

(4)
k−1,

v
(1)
k = E[θ4

k−1 . . . θ
4
1 E[ηk θ

4
k | Fk−1]]

= (4 θ3 τ2 + 4 θ τ4) v
(0)
k−1 + 4α (3 θ2 τ2 + τ4) v

(1)
k−1 + 12α2 θ τ2 v

(2)
k−1

+ 4α3 τ2 v
(3)
k−1,

v
(2)
k = E[θ4

k−1 . . . θ
4
1 E[η2

k θ
4
k | Fk−1]]

= (θ4 τ2 + 6 θ2 τ4 + τ6) v
(0)
k−1 + 4α (θ3 τ2 + 3 θ τ4) v

(1)
k−1 + 6α2 (θ2 τ2 + τ4) v

(2)
k−1

+ 4α3 θ τ2 v
(3)
k−1 + α4 τ2 v

(4)
k−1,

v
(3)
k = E[θ4

k−1 . . . θ
4
1 E[η3

k θ
4
k | Fk−1]]

= (4 θ3 τ4 + 4 θ τ6) v
(0)
k−1 + 4α (3 θ2 τ4 + τ6) v

(1)
k−1 + 12α2 θ τ4 v

(2)
k−1

+ 4α3 τ4 v
(3)
k−1,

v
(4)
k = E[θ4

k−1 . . . θ
4
1 E[η4

k θ
4
k | Fk−1]]

= (θ4 τ4 + 6 θ2 τ6 + τ8) v
(0)
k−1 + 4α (θ3 τ4 + 3 θ τ6) v

(1)
k−1 + 6α2 (θ2 τ4 + τ6) v

(2)
k−1

+ 4α3 θ τ4 v
(3)
k−1 + α4 τ4 v

(4)
k−1,
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where Table 1 may be read to get the coefficients appearing in the calculations. We
reach the matrix formulation Vk = H Vk−1 and the initial value V1 is obtained via

v
(0)
1 = E[θ4

1] = (θ4 + 6 θ2 τ2 + τ4) + 6α2 τ2 (θ2 + τ2) + α4 τ4,

v
(1)
1 = E[η1 θ

4
1] = (4 θ3 τ2 + 4 θ τ4) + 12α2 θ τ 2

2 ,

v
(2)
1 = E[η2

1 θ
4
1] = (θ4 τ2 + 6 θ2 τ4 + τ6) + 6α2 τ2 (θ2 τ2 + τ4) + α4 τ2 τ4,

v
(3)
1 = E[η3

1 θ
4
1] = (4 θ3 τ4 + 4 θ τ6) + 12α2 θ τ2 τ4,

v
(4)
1 = E[η4

1 θ
4
1] = (θ4 τ4 + 6 θ2 τ6 + τ8) + 6α2 τ2 (θ2 τ4 + τ6) + α4 τ 2

4 .

Hence, V1 = H V0. �
Now for all 1 ≤ k < `, consider the sequence

w
(a)
`,k = E[ηa` θ

4
` . . . θ

4
`−k+1 θ

2
`−k . . . θ

2
1]

where a ∈ {0, . . . , 4}, then build

W`,k =



w

(0)
`,k
...

w
(4)
`,k


 and G =




θ2 + τ2 2α θ α2 0 0
2 θ τ2 2α τ2 0 0 0

θ2 τ2 + τ4 2α θ τ2 α2 τ2 0 0
2 θ τ4 2α τ4 0 0 0

θ2 τ4 + τ6 2α θ τ4 α2 τ4 0 0



.

Once again, note that G can be expressed directly from {V0, . . . , V4},

(5.24)





G1 = θ2 V0 + 2 θ V1 + V2

G2 = 2α (θ V0 + V1)
G3 = α2 V0

G4 = 0
G5 = 0.

Observe also that the upper left-hand 3× 3 submatrix of G is precisely M given by
(1.4). This argument will be used thereafter to establish that ρ(G) < 1.

Lemma 5.3. Assume that (H1)–(H4) hold. Then, for all 1 ≤ k < `,

(5.25) W`,k = HkG`−k V0.

Proof. The calculations are precisely the same as in the proof of Lemmas 5.1 and
5.2. Indeed,

W`,k = Hk U`−k
where we extend the definition of Uk,h in (5.2) to a ∈ {0, . . . , 4}, namely

Uk =



u

(0)
k
...

u
(4)
k


 =



u

(0)
k,0
...

u
(4)
k,0


 = Uk,0.

Then it just remains to investigate the behavior of u`−k for a = 3 and a = 4 using
Table 1,

u
(3)
`−k = E[θ2

`−k−1 . . . θ
2
1 E[η3

`−k θ
2
`−k | F`−k−1]]
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= 2 θ τ4 u
(0)
`−k−1 + 2α τ4 u

(1)
`−k−1,

u
(4)
`−k = E[θ2

`−k−1 . . . θ
2
1 E[η4

`−k θ
2
`−k | F`−k−1]]

= (θ2 τ4 + τ6)u
(0)
`−k−1 + 2α θ τ4 u

(1)
`−k−1 + α2 τ4 u

(2)
`−k−1.

Hence, U`−k = GU`−k−1. It is not hard to conclude that, for all 1 ≤ k < `,

U`−k = G`−k V0.

�
Corollary 5.2. Assume that (H1)–(H4) hold. Then, the fourth-order properties of
(Xt) are such that, for all a ∈ {0, . . . , 4},

E[ηat X
4
t ] <∞.

Proof. For all t ∈ Z and k ≥ 1, denote by

(5.26) ∆t =




1
ηt
...
η4
t


 and Pt, k =

k−1∏

i=0

θt−i

with Pt, 0 = 1. Since (εt) and (ηt) are uncorrelated white noises, using the causal
representation (2.1) and the same notations as above,

E[∆tX
4
t ] =

∞∑

k=0

∞∑

`=0

∞∑

u=0

∞∑

v=0

E[∆t Pt, k Pt, ` Pt, u Pt, v εt−k εt−` εt−u εt−v]

= σ4

∞∑

k=0

E[∆t P
4
t, k] + 6 σ2

2

∞∑

k=0

∞∑

`=k+1

E[∆t P
2
t, k P

2
t, `]

= σ4

∞∑

k=0

Vk + 6σ2
2

∞∑

`=1

U` + 6σ2
2

∞∑

k=1

∞∑

`=k+1

W`,k.

Then, Lemmas 5.2 and 5.3 together with the strict stationarity of (θt) enable to
conclude the proof under the assumptions made, since ρ(G) = ρ(M) < 1. �

We now return to the proof of Theorem 3.2 and we make the following notations,

M (1)
n =

n∑

t=1

Xt−1

(
(1− 2α τ2) εt + 2α θ ηt εt + 2α η2

t εt
)
,

M (2)
n =

n∑

t=1

X 2
t−1

(
(1− 2α τ2 + α θ2) ηt + α η3

t + 2α θ (η2
t − τ2)

)
,

M (3)
n = 2α2

n∑

t=1

ηt−1Xt−1 ηt εt,

M (4)
n =

n∑

t=1

ηt−1X
2
t−1

(
2α2 θ ηt + 2α2 (η2

t − τ2)
)
,
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M (5)
n = α3

n∑

t=1

η2
t−1X

2
t−1 ηt,

M (6)
n = α

n∑

t=1

ηt ε
2
t .

Consider the filtration (F ∗n ) given in (5.6), and let

(5.27) Mn =



M

(1)
n

...

M
(6)
n


 .

Under our hypotheses,Mn is a locally square-integrable real vector (F ∗n )–martingale.
Once again we will make use of the central limit theorem for vector martingales, as
in the proof of Theorem (3.1). On the one hand, we have to study the asymptotic
behavior of the predictable quadratic variation of Mn. For all n ≥ 1, let

(5.28) 〈M〉n =
n∑

t=1

E
[
(∆Mt)(∆Mt)

T | F ∗t−1

]
,

with ∆M1 =M1. To simplify the calculations, we introduce some more notations.
The second-order moments of the process are defined in (5.9) and its fourth-order
moments are called

(5.29) E[∆tX
4
t ] =



δ0
...
δ4


 = ∆

where ∆t is given in (5.26). We use the strict stationarity to establish, following
Corollaries 5.1 and 5.2, that

(5.30) ∆ = (I5 −H)−1 (σ2R + σ4 V0)

in which R is defined from (5.24) as

R = 6λ0G1 + 6λ1G2 + 6λ2G3.

Now, we are going to show that the asymptotic behavior of 〈M〉n/n is entirely
described by Λ and ∆. By ergodicity,

(5.31)
1

n

n∑

t=1

∆tX
4
t

a.s.−→ ∆.

We get back to (5.28). First, there exists constants such that

〈M (1),M (2)〉n =
n∑

t=1

X3
t−1 E

[(
k(1) + k(2) ηt + k(3) η

2
t

)(
k(4) ηt + k(5) η

3
t

+ k(6) (η2
t − τ2)

)
εt
]

= 0

under our assumptions. Via analogous arguments, it follows that

〈M (1),M (4)〉n = 〈M (1),M (5)〉n = 〈M (1),M (6)〉n = 〈M (2),M (3)〉n
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= 〈M (3),M (4)〉n = 〈M (3),M (5)〉n = 〈M (3),M (6)〉n = 0.

Then we look at nonzero contributions, where we use the constants defined in (A.3)
and (A.4). Since the calculations are very similar we only detail the first one,

〈M (1)〉n =
n∑

t=1

X 2
t−1 E

[(
(1− 2α τ2) εt + 2α θ ηt εt + 2α η2

t εt
)2]

= σ2

(
1 + 4α2 (θ2 τ2 − τ 2

2 + τ4)
) n∑

t=1

X 2
t−1.

To sum up, we obtain

(5.32) 〈M〉n = K ◦
n∑

t=1




X2
t 0 ηtX

2
t 0 0 0

0 X4
t 0 ηtX

4
t η2

t X
4
t X2

t

ηtX
2
t 0 η2

t X
2
t 0 0 0

0 ηtX
4
t 0 η2

t X
4
t η3

t X
4
t ηtX

2
t

0 η2
t X

4
t 0 η3

t X
4
t η4

t X
4
t η2

t X
2
t

0 X2
t 0 ηtX

2
t η2

t X
2
t 1




+Rn

where the Hadamard product ◦ is used to lighten the formula, and where the re-
mainder Rn is made of isolated terms such that

(5.33)
Rn

n

a.s.−→ 0.

To reach these results, we refer the reader to the explanations following (5.13) since
the same methodology has just been applied on Mn. The combination of (5.11),
(5.31), (5.32) and (5.33) leads to

(5.34)
〈M〉n
n

a.s.−→ K ◦ Γ

where Γ is given by

(5.35) Γ =




λ0 0 λ1 0 0 0
0 δ0 0 δ1 δ2 λ0

λ1 0 λ2 0 0 0
0 δ1 0 δ2 δ3 λ1

0 δ2 0 δ3 δ4 λ2

0 λ0 0 λ1 λ2 1



.

On the other hand, it is necessary to prove that the Lindeberg’s condition is satisfied,
namely that for all ε > 0,

(5.36)
1

n

n∑

t=1

E
[
‖∆Mt‖2 I{‖∆Mt‖≥ ε

√
n} | F ∗t−1

] P−→ 0

as n tends to infinity. The result follows from Corollaries 5.1 and 5.2, together with
the same reasoning as the one used to establih (5.16). From (5.34) and (5.36), we
deduce that

(5.37)
Mn√
n

D−→ N (0, K ◦ Γ).
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Finally, by a very tedious but straightforward calculation, one can obtain that

(5.38)
√
n
(
θ̂n − θ∗

)
=

n∑n
t=1X

2
t−1

ΩT
6 Mn + rn

(1− 2α τ2)
√
n

where ΩT
6 = (1 1 1 1 1 1) and rn = o(

√
n) a.s. from (5.11) and (5.31). It remains

to apply Slutsky’s lemma to conclude that
√
n
(
θ̂n − θ∗

) D−→ N (0, ω2)

with

(5.39) ω2 =
ΩT

6 (K ◦ Γ) Ω6

λ2
0 (1− 2α τ2)2

using the whole notations above. �

5.6. Proof of Theorem 3.3. Letting Vn =
√
n I6, such a sequence obviously sat-

isfies the regular growth conditions of [8]. Keeping the notations of (5.27), we have
studied the hook of Mn in (5.34) and Lindeberg’s condition is already fulfilled in
(5.36), it only remains to check that

(5.40)
[M]n − 〈M〉n

n

a.s.−→ 0

where

[M]n =
n∑

t=1

(∆Mt)(∆Mt)
T

is the total variation of Mn, to apply Thm. 2.1 of [8]. To be precise with the
required hypotheses, note that (5.36) also holds almost surely, by ergodicity. But
(5.40) is an immediate consequence of the ergodicity of the increments. Thus,

1

6 lnn

n∑

t=1

[
1−

(
t

t+ 1

)6
]
MtMT

t

t

a.s.−→ K ◦ Γ

and, after simplifications,

(5.41)
1

lnn

n∑

t=1

MtMT
t

t 2

a.s.−→ K ◦ Γ.

The remainder rn in (5.38) is a long linear combination of isolated terms, we detail
here the treatment of the largest one which takes the form of η2

n−1X
2
n−1 ηn. Corollary

5.2 implies, for a = 4 and via the ergodic theorem, that

1

n

n∑

t=1

η4
t−1X

4
t−1 η

2
t

a.s.−→ δ4 τ2,

which in turn leads to

η4
n−1X

4
n−1 η

2
n

n

a.s.−→ 0 so that
η4
n−1X

4
n−1 η

2
n

n2
= o(n−1) a.s.
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It follows that
n∑

t=1

η4
t−1X

4
t−1 η

2
t

t2
= o

( n∑

t=1

1

t

)
= o(lnn) a.s.

By extrapolation, treating similarly all residual terms,

(5.42)
1

lnn

n∑

t=1

r 2
t

t 2

a.s.−→ 0.

It remains to combine these results to get

(1− 2α τ2)2

lnn

n∑

t=1

(
θ̂t − θ∗

)2
=

1

lnn

n∑

t=1

ΩT
6 MtMT

t Ω6

S 2
t−1

+
1

lnn

n∑

t=1

r 2
t

S 2
t−1

+
2

lnn

n∑

t=1

ΩT
6 Mt rt
S 2
t−1

where

(5.43) Sn =
n∑

t=0

X 2
t satisfies

Sn
n

a.s.−→ λ0.

Using Cauchy-Schwarz inequality, the cross-term is shown to be negligible. From
(5.39), (5.41), (5.42) and the previous remark,

1

lnn

n∑

t=1

(
θ̂t − θ∗

)2 a.s.−→ ΩT
6 (K ◦ Γ) Ω6

λ2
0 (1− 2α τ2)2

= ω2

which concludes the first part of the proof and follows from Toeplitz lemma applied

in the right-hand side of the decomposition. The rate of convergence of θ̂n is easier
to handle. As a matter of fact, we have already seen that Mn is a vector (F ∗n )–
martingale having ergodic and stationary increments. So,

(5.44) Nn = ΩT
6 Mn

is a scalar (F ∗n )–martingale having the same incremental properties, and our hy-
potheses guarantee that E[(∆N1)2] = ΩT

6 (K ◦ Γ) Ω6 < ∞. The main theorem of
[20] enables to infer that

(5.45) lim sup
n→+∞

Nn√
2n ln lnn

=
√

ΩT
6 (K ◦ Γ) Ω6 a.s.

and

(5.46) lim inf
n→+∞

Nn√
2n ln lnn

= −
√

ΩT
6 (K ◦ Γ) Ω6 a.s.

replacing Nn by −Nn. Thus, once again exploiting (5.38),

lim sup
n→+∞

√
n

2 ln lnn

(
θ̂n − θ∗

)
=

1

λ0 (1− 2α τ2)
lim sup
n→+∞

Nn + rn√
2n ln lnn

= ω a.s.
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using (5.45) and the fact that rn = o(
√
n) a.s. The symmetric result is reached from

(5.46) and the proof is complete. �

5.7. Proof of Theorem 4.1. One shall prove this result in two steps. First, we
will identify the covariance Σ such that

(5.47)
√
n

(
θ̂n − θ∗
ϑ̂n − ϑ∗

)
D−→ N (0,Σ)

where θ̂n and ϑ̂n are given in (4.1), θ∗ = ρX(1) is the limiting value of θ̂n deeply
investigated up to this point and

ϑ∗ = ρX(2) =
θ2 + α τ2 (1− 2α τ2)

1− 2α τ2

.

Then we will translate the result to the new estimates (4.3) via the Delta method.
Of course the first step being very close to the proof of Theorem 3.2, we only give

an outline of the calculations. The second-order lag in ϑ̂n gives a new scalar (F ∗n )–
martingale contribution that we will define as

Ln = α

n∑

t=1

Xt−1 ηt εt +
n∑

t=1

X 2
t−1

(
α θ ηt + α (η2

t − τ2)
)

+ α2

n∑

t=1

ηt−1X
2
t−1 ηt +

n∑

t=2

Xt−2 εt +
n∑

t=2

Xt−2 εt−1 ηt

+ θ

n∑

t=2

X 2
t−2 ηt +

n∑

t=2

X 2
t−2 ηt−1 ηt + α

n∑

t=2

ηt−2X
2
t−2 ηt(5.48)

which follows from a very tedious development of
∑n

t=2Xt−2Xt. An exhaustive ex-

pansion of ϑ̂n − ϑ∗ leads to
(
ϑ̂n − ϑ∗

)
Sn−2 = θ∗ΩT

6 Mn + Ln + sn

where Mn is given in (5.27), Sn in (5.43), ΩT
6 = (1 1 1 1 1 1) and sn is made of

isolated terms, each one being o(
√
n) a.s. as soon as the process has fourth-order

moments, i.e. under (H4). Combined with (5.38),

(5.49)
√
n

(
θ̂n − θ∗
ϑ̂n − ϑ∗

)
=
An√
n

(
Mn

Ln

)
+ Tn

where

(5.50) An =

(
n

Sn−1

ΩT
6

1−2α τ2
0

n
Sn−2

θΩT
6

1−2α τ2
n

Sn−2

)
a.s.−→ A =

(
ΩT

6

λ0 (1−2α τ2)
0

θΩT
6

λ0 (1−2α τ2)
1
λ0

)

are matrices of size 2× 7 and Tn = o(1) a.s. We have to study the hook of this new
vector (F ∗n )–martingale. First, 〈M〉n is already treated in (5.34). For the cross-term
and the last one, we need more notations. Let

(5.51) µa,b,c,p,q = E[η at−1 η
b
t ε

c
t X

p
t−1X

q
t ]
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and observe that µ0,b,0,0,2 = [Λ]b+1 in (5.9) for b ∈ {0, 1, 2} and that µ0,b,0,0,4 = [∆]b+1

in (5.29) for b ∈ {0, . . . , 4}. Then, it can be seen via analogous arguments as usual
relying on ergodicity and negligible isolated terms, that

(5.52)
〈M,L〉n

n

a.s.−→ (L ◦Υ) Ω6

where L is defined in (A.6) and Υ is given by

(5.53) Υ =




θ∗ λ0 λ0 0 0 0 0
δ0 δ1 µ0,0,0,2,2 µ0,1,0,2,2 µ1,0,0,2,2 µ0,0,1,1,2

λ1 0 0 0 0 0
δ1 δ2 µ0,1,0,2,2 µ0,2,0,2,2 µ1,1,0,2,2 µ0,1,1,1,2

δ2 δ3 µ0,2,0,2,2 µ0,3,0,2,2 µ1,2,0,2,2 µ0,2,1,1,2

λ0 λ1 0 0 0 0



.

Finally, we have

〈L〉n
n

a.s.−→ ` = m(1) λ0 +m(2) δ0 +m(3) δ1 +m(4) δ2 + θm(5) µ0,0,0,2,2

+ αm(5) µ1,0,0,2,2 + (1 + α)m(5) µ0,1,0,2,2 +m(5) µ0,0,1,1,2

+ m(6) µ0,2,0,2,2 + αm(6) µ1,1,0,2,2 +m(6) µ0,1,1,1,2(5.54)

where the constants are detailed in (A.7). This last convergence, together with
(5.52), (5.34) and their related notations, implies

(5.55)
1

n

〈(
M
L

)〉

n

a.s.−→ ΣML =

(
K ◦ Γ (L ◦Υ) Ω6

ΩT
6 (L ◦Υ)T `

)
.

Lindeberg’s condition is clearly fulfilled and Slutsky’s lemma applied on the relation
(5.49), taking into account the asymptotic normality of the martingale and the
remarks that follow (5.49), enables to identify Σ in (5.47) as

(5.56) Σ = AΣMLA
T

where A is given in (5.50). This ends the first part of the proof.

Remark 5.1. It is important to note that, despite the complex structure of Σ, it
only depends on the parameters and can be computed explicitely. Indeed, it is easy
to see that all coefficients µa,b,c,p,q in ΣML exist under our hypotheses, exploiting the
fourth-order moments of the process. We can compute each of them using the same
lines as in our previous technical lemmas.

Consider now the mapping f in (4.2) whose Jacobian matrix is

∇f(x, y) =

(
(1−2y) (1+2x2)

(1−2x2)2
−2x

1−2x2

−2x (1−2y)
(1−2x2)2

1
1−2x2

)
.

The couple of estimates (4.3) therefore satisfies

√
n

(
θ̃n − θ
γ̃n − γ

)
D−→ N (0,∇Tf(θ∗, ϑ∗) Σ∇f(θ∗, ϑ∗))
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by application of the Delta method, the pathological cases θ∗ = ± 1√
2

being excluded

from the study. �

Appendix

This appendix is devoted to the numerous constants of the study, for greater
clarity. The first of them are given by

(A.1)





k̄(1) = (1 + α θ)2 τ2 + α2 (τ4 − τ 2
2 )

k̄(1−2) = α2 (1 + α θ) τ2

k̄(2) = α4 τ2

k̄(3) = (1 + α2 τ2)σ2

and serve to build the matrix

(A.2) K̄ =




k̄(1) k̄(1−2) 0
k̄(1−2) k̄(2) 0

0 0 k̄(3)


 .

We also define

(A.3)





k(1) = σ2 (1 + 4α2 (θ2 τ2 − τ 2
2 + τ4))

k(1−3) = 4α3 θ τ2 σ2

k(2) = (1− 2α τ2 + α θ2) (2α τ4 + τ2 (1− 2α τ2 + α θ2))
+ α2 (τ6 + 4 θ2 (τ4 − τ 2

2 ))
k(2−4) = 2α2 θ τ2 (1 + α θ2 − 4α τ2) + 6α3 θ τ4

k(2−5) = α3 (α τ4 + τ2 (1− 2α τ2 + α θ2))
k(2−6) = ασ2 (α τ4 + τ2 (1− 2α τ2 + α θ2))
k(3) = 4α4 τ2 σ2

k(4) = 4α4 (θ2 τ2 − τ 2
2 + τ4)

k(4−5) = 2α5 θ τ2

k(4−6) = 2α3 θ τ2 σ2

k(5) = α6 τ2

k(5−6) = α4 τ2 σ2

k(6) = α2 τ2 σ4

that we put in the matrix form

(A.4) K =




k(1) 0 k(1−3) 0 0 0
0 k(2) 0 k(2−4) k(2−5) k(2−6)

k(1−3) 0 k(3) 0 0 0
0 k(2−4) 0 k(4) k(4−5) k(4−6)

0 k(2−5) 0 k(4−5) k(5) k(5−6)

0 k(2−6) 0 k(4−6) k(5−6) k(6)



.
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Moreover, we have to consider

(A.5)





` ′(1) = σ2

`(1) = 2α2 θ τ2 σ2

` ′(2) = α θ (τ2 (1− 2α τ2 + α θ2)− α (2 τ 2
2 − 3 τ4))

`(2) = α τ4 + τ2 (1− 2α τ2 + α θ2)
`(3) = 2α3 τ2 σ2

` ′(4) = 2α3 (θ2 τ2 − τ 2
2 + τ4)

`(4) = 2α2 θ τ2

`(5) = α4 τ2

`(6) = α τ2 σ2 (1 + α)

in the matrix form

(A.6) L =




` ′(1) `(1) 0 0 0 0

` ′(2) α2 `(2) θ `(2) `(2) α `(2) `(2)

`(3) 0 0 0 0 0
` ′(4) α2 `(4) θ `(4) `(4) α `(4) `(4)

α θ `(5) α2 `(5) θ `(5) `(5) α `(5) `(5)

θ `(6) α `(6) 0 0 0 0



.

We conclude by a last set of constants,

(A.7)





m(1) = σ2 (1 + τ2 (1 + α2))
m(2) = θ2 (1 + α2) τ2 + (1− α2) τ 2

2 + α2 τ4

m(3) = 2α θ (1 + α2) τ2

m(4) = α2 (1 + α2) τ2

m(5) = 2α θ τ2

m(6) = 2α2 τ2.
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Chapitre 2

Modèles graphiques partiels

Dans ce deuxième chapitre, nous allons nous intéresser aux modèles graphiques par-
tiels gaussiens (PGGM), dans un contexte de grande dimension. Nous explorerons dans
un premier temps une procédure d’estimation par maximum de vraisemblance pénalisée
avant de nous focaliser, dans un second temps, sur une contrepartie bayésienne. Nous
donnerons à cet égard le contenu explicite de deux articles, un par section, fruit de tra-
vaux effectués en collaboration avec E. Okome Obiang et P. Jézéquel. Mais avant cela,
il semble important de fournir quelques détails techniques sur le principe des PGGMs.
Supposons que Z ∼ Nd(0,Σ) avec Σ ∈ S d

++. Un tel vecteur gaussien admet Σ pour ma-
trice de covariance et Ω = Σ−1 pour matrice de précision. L’estimation de Ω est à la base
de l’inférence dans les modèles graphiques gaussiens, voir par exemple Maathuis et al.
(2018) pour un tour d’horizon complet sur le sujet ou encore (Giraud, 2014, Chap. 7)
pour un premier aperçu. L’intérêt de travailler sur Ω plutôt que sur Σ repose sur une
propriété très forte des vecteurs gaussiens, qui stipule que

Corr(Zi, Zj | Z̸= i, j) = − Ωij√
Ωii Ωjj

(2.1)

pour tous 1 ⩽ i, j ⩽ d, en d’autres termes que la corrélation partielle entre deux coor-
données du vecteur gaussien Z se lit directement dans sa matrice de précision. En parti-
culier, on voit que dans un tel contexte gaussien, l’indépendance conditionnelle entre Zi

et Zj est équivalente à Ωij = 0. Les liens directs entre les composantes de Z peuvent donc
se représenter selon une structure de graphe dans lequel les nœuds sont les composantes
et deux composantes sont reliées par une arête si l’emplacement correspondant dans Ω
n’est pas nul (voir la partie gauche de la Figure 2.1, très schématique), d’où l’importance
cruciale pour une procédure statistique de récupérer le support de Ω, et cela passe par sa
capacité à imposer de la sparsité (par exemple avec de la pénalisation dans une approche
fréquentiste, ou grâce à une stratégie spike-and-slab en bayésien, puisque ce sont les cas
de figure qui vont nous intéresser par la suite). Plaçons-nous désormais dans un contexte
de régression et posons Z = (Y,X) avec Y ∈ Rq, X ∈ Rp et donc d = q + p. Comme
évoqué dans l’introduction, cela revient à considérer qu’il existe une relation linéaire de
la forme

Y = BTX + E avec E ∼ Nq(0, R) (2.2)
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et comme nouveaux paramètres B = −∆T Ω−1
y et R = Ω−1

y où ∆ et Ωy sont extraits de
Ω selon la décomposition en blocs

Ω =

(
Ωy ∆
∆T Ωx

)
. (2.3)

L’estimation du couple (Ωy,∆) est alors une alternative qui possède un avantage primor-
dial pour l’interprétation statistique : on a accès à travers ∆ aux corrélations partielles,
et donc aux liens directs entre les prédicteurs et les réponses. Cela n’est pas possible par
l’estimation seule de B, qui peut contenir des liens indirects (en raison par exemple d’une
corrélation forte entre les réponses (tout du moins pour q > 1), lorsque Ωy n’est pas
diagonale). Dans un PGGM, on cherchera donc à estimer conjointement ∆ et Ωy en lieu
et place de B. Par ailleurs et comme nous l’avons détaillé en section introductive, dans un
contexte de régression en grande dimension par rapport à p, extraire ces estimations de
taille O(p) de celle de Ω induit un biais conséquent car cette dernière étant elle-même de
très grande dimension, en O(p2), son estimation sera nécessairement imprécise (en raison
d’effets de pénalisations, de shrinkage, etc.). D’où l’intérêt de développer des méthodes
d’estimation qui parviennent à se focaliser sur ∆ et Ωy, en laissant Ωx de côté. À titre
d’exemple, considérons un vecteur gaussien (Y1, Y2, X1, X2, X3) dans lequel il existe les
corrélations partielles X1, X2 ↔ Y1 et X3 ↔ Y1, Y2 avec Y1 ↔ Y2 (à rapprocher d’un
modèle linéaire dans lequel X1 et X2 expliquent Y1, X3 explique Y1 et Y2 et les réponses
Y1 et Y2 sont corrélées). Alors, ses matrices de covariance et de précision prendraient la
forme

Σ =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




et Ω =




∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 ∗
∗ 0 ∗ ∗ ∗
∗ 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




(2.4)

et on pourra trouver sur la partie droite de la Figure 2.1 une schématisation du modèle
graphique partiel qui en découlerait (code couleurs compris). Notons bien ici que les liens
potentiels entre les covariables (en gris ci-dessus) ne nous intéressent pas, on souhaite
laisser Ωx hors de l’étude.

Figure 2.1 – Schématisation d’un modèle graphique et des corrélations partielles dans
un vecteur gaussien (Z1, Z2, Z3) avec Z1 ↔ Z2 et Z2 ↔ Z3 mais Z1 ̸↔ Z3, à gauche. Les
liens directs sont en trait plein, les liens indirects en pointillés. Schématisation du modèle
graphique partiel découlant de l’exemple cité ci-dessus avec les liens entre les covariables
et les réponses (bleu) et les liens entre les réponses (violet).
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2.1 Approche par vraisemblance pénalisée

Maximiser la vraisemblance pénalisée du modèle graphique gaussien sur un échantillon
de taille n revient à minimiser sur S d

++ l’objectif

Ln(Ω) = − ln det(Ω) + tr(Sn Ω) + λ pen(Ω) (2.5)

où Sn est la matrice de covariance empirique des observations et pen(Ω) est une fonction
de pénalisation munie de son paramètre de régularisation λ ⩾ 0, généralement de type
ℓ1 à des fins de sparsité. Le choix pen(Ω) = |Ω|1 correspond au Graphical Lasso bien
connu de Friedman et al. (2008) mais on rencontre aussi fréquemment pen(Ω) = |Ω|−1 qui
revient à ne pas pénaliser les éléments diagonaux. Pour pallier le problème évoqué à la fin
du paragraphe précédent, Yuan et Zhang (2014) montrent que l’on peut faire disparâıtre
Ωx par une étape préalable d’optimisation et que dans un PGGM pénalisé, on se ramène
à la minimisation de l’objectif

Ln(Ωy,∆) = − ln det(Ωy) + tr(Sn,y Ωy) + 2 tr(S T
n,yx ∆)

+ tr(Sn,x ∆TΩ−1
y ∆) + λ pen(Ωy) + µ pen(∆) (2.6)

où Sn,y, Sn,x et Sn,yx désignent respectivement la variance empirique des réponses, celle
des prédicteurs et leur covariance empirique. Chiquet et al. (2017) proposent de remplacer
la pénalisation sur Ωy par une seconde pénalisation sur ∆ impliquant un terme de la forme
tr(∆L∆TΩ−1

y ) pour une matrice L ∈ S p
+ à choisir, et ayant un effet structurant de par sa

construction. Par exemple avec

L =
1

2




1 −1 0 . . . 0

−1 2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 2 −1

0 . . . 0 −1 1




(2.7)

qui représente la matrice des différences finies du premier ordre, la présence de ∆L∆T

induira une pénalisation dans les différences entre deux valeurs voisines (en ligne) de
∆, agissant de façon similaire à la version fused du Lasso, et favorisera la sélection de
segments de prédicteurs plutôt que de prédicteurs isolés. Pour illustrer cela, dans le cas
où R est diagonale avec R = diag(σ 2

1 , . . . , σ
2
q ), on peut voir que, pour tout β ⩾ 1,

tr(∆L∆TΩ−1
y )β =

(
q∑

i=1

σ 2
i

p∑

j=2

(ωi,j − ωi,j−1)
2

)β

⩾
q∑

i=1

σ 2β
i

p∑

j=2

|ωi,j − ωi,j−1| 2β (2.8)

et la pénalisation de type fused apparâıt clairement, mais amplifiée par β. Pour L = Ip,
la pénalisation prend toutes les apparences d’un ridge (à Ωy fixé), et donc d’un elastic-
net une fois combinée avec pen(∆) = |∆|1. Comme indiqué, cette section est dédiée au
contenu de l’article Okome Obiang et al. (2021), publié dans ESAIM Probability and
Statistics, qui reprend ces thématiques et tente de les élargir.
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Résumé

On souhaite réfléchir à un algorithme d’estimation par maximum de vraisemblance
pénalisée dans un PGGM structurant dont l’objectif très général prend la forme de

Ln(Ωy,∆) = − ln det(Ωy) + tr(Sn,y Ωy) + 2 tr(S T
n,yx ∆)

+ tr(Sn,x ∆TΩ−1
y ∆) + η tr(L∆TΩ−1

y ∆)β + λ |Ωy|−1 + µ |∆|1 (2.9)

avec un hyperparamètre β ∈ R et des paramètres de régularisation λ, µ, η ⩾ 0. Nous
motivons par ailleurs cette écriture en expliquant en quoi elle peut être vue sous certains
aspects comme le résultat de la présence d’un a priori gaussien généralisé sur ∆ dans une
hiérarchie bayésienne (cela sera formalisé dans la section suivante). Après avoir montré
la convexité jointe en (Ωy,∆) de cet objectif lorsque β ⩾ 1 (ou β = 0), on propose une
procédure d’estimation basée sur une descente de coordonnées qui alterne entre

Ω̂y = arg min
S q
++

Ln(Ωy, ∆̂) et ∆̂ = arg min
Rq×p

Ln(Ω̂y,∆). (2.10)

Plus précisément, les étapes d’optimisation sont effectuées grâce à un algorithme de type
Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN), Ωy est estimée de façon tri-
angulaire pour assurer sa symétrie et l’on fixe l’objectif à +∞ sur S̄ q

++ pour imposer une
solution définie positive. On montre alors, en résumé, qu’avec une forte probabilité et à
condition que le modèle soit correctement régulé par le triplet (λ, µ, η),

∥∥θ̂ − θ
∥∥
F

≲
√

|Sθ| ln p

n
(2.11)

où θ = (Ωy,∆) ∈ Rq×(q+p) et |Sθ| est le nombre de coordonnées non-nulles de θ. Cette
borne est similaire à celle de Yuan et Zhang (2014) mais également à celle de l’erreur
ℓ2 du Lasso, voir par exemple (Hastie et al., 2015, Chap. 11). Un exemple sur données
réelles illustre le fonctionnement de la procédure. On pourra trouver les programmes d’op-
timisation et de démonstration sur le GitHub https://github.com/FredericProia/

StructPGGM.

Perspectives

L’approche est intéressante car très flexible du point de vue de la régularisation,
mais elle manque encore d’un atout essentiel aux régressions en grande dimension : la
possibilité d’imposer des structures de groupe. Cela ne devrait pas être insurmontable,
ni en pratique ni dans la garantie théorique dans la mesure où la convexité de l’objectif
est maintenue. Par contre, en dehors du cas trivial où β = 0, notre preuve de convexité
repose sur la condition β ⩾ 1. Or, comme nous le reverrons dans la section suivante,
il est usuel de placer un a priori Laplace sur le paramètre du Lasso bayésien, voir par
exemple (Hastie et al., 2015, Sec. 6.1), et cela correspondrait au cas β = 1/2 dans notre
étude. D’autant que combiné avec la matrice des différences finies du premier ordre comme
choix de L, il s’ensuivrait une pénalisation ayant les effets de la version fused du Lasso. En
somme, il pourrait être instructif de développer une procédure valable dans cette situation
particulière où la convexité de l’objectif n’est pas acquise. Par ailleurs, le domaine de
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validité de la garantie théorique impose en particulier λ > 0 alors que, en pratique, il fait
sens de retenir λ = 0. D’une part car q étant petit, la pénalisation des éléments de Ωy ne
parâıt pas nécessaire et n’engendre d’ailleurs que peu de changement dans les résultats
numériques, d’autre part et surtout car les temps de calcul en sont fortement impactés.
Au vu des étapes de la preuve, cela ne parâıt pas évident de premier abord mais ce cas
de figure pourrait mériter une étude plus poussée. Enfin, l’optimisation de l’objectif (2.9)
est sans doute atteignable par d’autres approches que celle utilisée ici : par exemple, sous
l’hypothèse de convexité, peut-on annuler son gradient par un algorithme stochastique et
en déduire des propriétés asymptotiques via les outils adaptés à ce contexte ?
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A PARTIAL GRAPHICAL MODEL WITH A STRUCTURAL PRIOR ON
THE DIRECT LINKS BETWEEN PREDICTORS AND RESPONSES

EUNICE OKOME OBIANG, PASCAL JÉZÉQUEL, AND FRÉDÉRIC PROÏA

Abstract. This paper is devoted to the estimation of a partial graphical model with a
structural Bayesian penalization. Precisely, we are interested in the linear regression setting
where the estimation is made through the direct links between potentially high-dimensional
predictors and multiple responses, since it is known that Gaussian graphical models enable
to exhibit direct links only, whereas coefficients in linear regressions contain both direct
and indirect relations (due e.g. to strong correlations among the variables). A smooth
penalty reflecting a generalized Gaussian Bayesian prior on the covariates is added, either
enforcing patterns (like row structures) in the direct links or regulating the joint influence
of predictors. We give a theoretical guarantee for our method, taking the form of an upper
bound on the estimation error arising with high probability, provided that the model is
suitably regularized. Empirical studies on synthetic data and a real dataset are conducted.

AMS 2020 subject classifications: Primary 62A09, 62F30; Secondary 62J05.

1. Introduction

We are interested in the recovery and estimation of direct links between high-dimensional
predictors and a set of responses. Whereas the graphical models seem a natural way to go,
we propose to take account of a prior knowledge on the predictors, when possible. This is
typically the case when dealing with genetic markers whose joint influence may be anticipated
thanks to some kind of genetic distance, or when the predictors are supposed to represent
a continuous phenomenon so that consecutive covariates probably act together. In this
regard, while taking up the graphical approach, we introduce some Bayesian information
in a structural regularization of the estimation procedure, although the inference remains
frequentist, thereby following the idea of Chiquet et al. [7]. This strategy also enables to
affect the amount of shrinkage by playing with some hyperparametrization in the prior, while
sparsity may be obtained via usual penalty-based patterns. Regarding the mathematical
formalization of the graphical models that we will just briefly discuss in this introduction,
we refer the reader to the very complete handbook recently edited by Maathuis et al. [16].
We also refer the reader to the book of Hastie et al. [11] and to the one of Giraud [10], both
related to the standard high-dimensional statistical methods. Before introducing the model
and the organization of this work, let us describe the notation used throughout the paper.

1.1. Notation. For any matrix A, |A|∗ = ‖vec(A)‖∗ is the elementwise `∗ norm of A and
|A|−∗ is |A|∗ deprived of the diagonal terms of A. We also note ‖A‖F = |A|2 the Frobenius
norm of A and ‖A‖2 the spectral norm of A. The Frobenius inner product between any
matrices A and B of same dimensions is 〈〈A,B〉〉 = 〈vec(A), vec(B)〉 = tr(AtB) whereas

Key words and phrases. High-dimensional linear regression, Partial graphical model, Structural penaliza-
tion, Sparsity, Convex optimization.
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〈u, v〉 = ut v is the inner product of the Euclidean real space. For any vector u, |u|0 is
the number of non-zero values in u. For a matrix A, [A]C is to be understood as the
matrix A whose elements outside of the set of coordinates C are set to zero and vec(A)
is the vectorization of A into a column vector. The eigenvalues of a square matrix A of
size d with spectrum sp(A) are λi(A) taken in decreasing order (from λ1(A) = λmax(A) to
λd(A) = λmin(A)). The cones of symmetric positive semi-definite and definite matrices of
dimension d are S d+ and S d++ respectively.

1.2. The partial graphical model. In the classic Gaussian graphical model (GGM) set-
ting, we aim at estimating the precision matrix Ω = Σ−1 of jointly normally distributed
random vectors Y ∈ Rq and X ∈ Rp with zero mean and covariance Σ. The point is that it
induces a graphical structure among the variables and the support of Ω is closely related to
the conditional interdependences between them. Let us consider, now and in all the study,
the sample covariances of n independent observations (Yi, Xi), denoted by

(1.1) S (n)
yy =

1

n

n∑

i=1

Yi Y
t
i , S (n)

yx =
1

n

n∑

i=1

YiX
t
i and S (n)

xx =
1

n

n∑

i=1

XiX
t
i .

Maximizing the penalized likelihood of a GGM boils down to finding Ω ∈ S p+q++ that minimizes
the convex objective

(1.2) Ln(Ω) = − ln det(Ω) + 〈〈S (n),Ω〉〉+ λ pen(Ω)

where S (n) is the full sample covariance built from the blocks (1.1). The penalty function
pen(Ω) is usually |Ω|1 or even |Ω|−1 . Efficient algorithms exist to get solutions for (1.2), see
e.g. Banerjee et al. [2], Yuan and Lin [28], Lu [15] or the graphical Lasso of Friedman et
al. [9]. The reader may also look at the theoretical guarantees of Ravikumar et al. [21].
However, thinking at Xi as a predictor of size p associated with a response Yi of size q,
the partial Gaussian graphical model (PGGM), developped e.g. by Sohn and Kim [26] or
Yuan and Zhang [29], appears as a powerful tool to exhibit direct relationships between the
predictors and the responses. To understand this, consider the decomposition into blocks

Ω =

(
Ωyy Ωyx

Ω t
yx Ωxx

)
and Σ =

(
Σyy Σyx

Σ t
yx Σxx

)

where Ωyy ∈ S q++, Ωyx ∈ Rq×p and Ωxx ∈ S p++ and where the same goes for Σxx, Σyx and
Σxx. The precision matrix Ω = Σ−1 satisfies, by blockwise inversion,

(1.3) Ω−1
yy = Σyy − Σyx Σ−1

xx Σ t
yx and Ωyx = −(Σyy − Σyx Σ−1

xx Σ t
yx)
−1 Σyx Σ−1

xx .

The conditional distribution peculiar to Gaussian vectors

Yi |Xi ∼ N (−Ω−1
yy ΩyxXi, Ω−1

yy )

gives a new light on the multiple-output regression Yi = B tXi + Ei with Gaussian noise
Ei ∼ N (0, R), through the reparametrization B = −Ω t

yx Ω−1
yy and R = Ω−1

yy . Whereas B
contains direct and indirect links between the predictors and the responses (due e.g. to
strong correlations among the variables), Ωyx only contains direct links, as it is shown by the
graphical models theory. In other words, the direct links are closely related to the concept of
partial correlations between X and Y (see Meinshausen and Bülmann [17] or Peng et al. [19],
for the univariate case). For example, the direct link between predictor k and response ` may
be evaluated through the partial correlation Corr(Y`, Xk |Y 6= `, X6= k) contained, apart from a
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multiplicative coefficient, in the `-th row and k-th column of Ωyx (see e.g. Cor. A.6 in [10])
with the particularly interesting consequence that the support of Ωyx is sufficient to identify
direct relationships between X and Y . Hence, in the partial setting, the objective reduces to
the estimation of the direct links Ωyx together with the conditional precision matrix of the
responses Ωyy. Maximizing the penalized conditional log-likelihood of the model now comes
down to minimizing the new convex objective

Ln(Ωyy,Ωyx) = − ln det(Ωyy) + 〈〈S (n)
yy ,Ωyy〉〉+ 2 〈〈S (n)

yx ,Ωyx〉〉
+ 〈〈S (n)

xx ,Ω
t
yx Ω−1

yy Ωyx〉〉+ λ pen(Ωyy) + µ pen(Ωyx)(1.4)

over (Ωyy,Ωyx) ∈ S q++ × Rq×p for some usual penalty functions. It is worth noting that
pen(Ωyx) often plays a crucial role in modern statistics dealing with high-dimensional pre-
dictors (and the natural choice is |Ωyx|1 to get sparsity) while we may choose λ = 0, because
the number of responses is generally small. In the seminal papers [26] and [29], the authors
consider |Ωyy|1 and |Ωyy|−1 for pen(Ωyy), respectively. Yuan and Zhang [29] also point out
that no estimation of Ωxx is needed anymore. In a graphical model, the estimation of Ωyx

and Ωyy depends on the accuracy of the estimation of Ω which, in turn, is strongly affected
by the one of Ωxx, especially in a high-dimensional setting. The partial model overrides this
issue, the focus is on Ωyx and Ωyy while Ωxx has disappeared from the objective function
(1.4). The latter is obtained either by considering the multiple-output Gaussian regression
scheme, or, as it is done in [29], by eliminating Ωxx thanks to a first optimization step in
(1.2). In this paper, we will consider the penalties

(1.5) pen(Ωyy) = |Ωyy|−1 and pen(Ωyx) = |Ωyx|1
which correspond to the PGGM (Gm) of [29]. The Spring (Spr) of [7] can also be seen
as a PGGM but with no penalty on Ωyy (replaced with an additional structuring one on
Ωyx, we will come back to this point thereafter), so for Spr we may consider λ = 0. The
generalized procedure (GenGm) at the heart of the study relies on a combination between
these two approaches. We will see in due time that we keep both the penalties of Gm and
the structuring one of Spr on Ωyx. Finally, the intermediate solution consisting in estimating
Ωyy and B through the conditional distribution Yi |Xi ∼ N (B tXi, Ω−1

yy ) with penalizations
both on B and Ωyy, presented and analyzed by Rothman et al. [23] and by Lee and Liu [14],
is better known as a multivariate regression with covariance estimation (MRCE). However,
it has been shown that the objective function suffers from a lack of convexity and that the
optimization procedure may be debatable, in addition to the less convenient setup for sta-
tistical interpretation (B contains both direct and indirect influences) compared to PGGM.
Without claiming to be exhaustive, let us conclude this quick introduction by citing some
related works, like the structural generalization of the Elastic-Net of Slawski et al. [25], the
Dantzig approach of Cai et al. [6] put in practice on genomic data [5], the greedy research
of the non-zero pattern in Ω of Johnson et al. [13], the approach of Fan et al. [8] using a
non-convex SCAD penalty to reduce the bias of the Lasso in the estimation of Ω, the eQTL
data analysis of Yin and Li [27] which makes use of a sparse conditional GGM, and so on.
All the references inside will complete this concise list.

1.3. Organization of the paper. To sum up, we have two goals in this paper:

(1) Give some theoretical guarantees to the (slightly modified) model introduced in Chi-
quet et al. [7].
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(2) Generalize the result of Yuan and Zhang [29] to the case where a structural penal-
ization is added in the estimation step.

In Section 2, we introduce the model, consisting in putting a generalized Gaussian prior on
the direct links before the procedure of estimation of Ωyy and Ωyx, and we detail the new
convex objective. Then we provide some error bounds for our estimates, useful as theoretical
guarantees of performance. Section 3 is devoted to empirical considerations. We explain how
we deal with the minimization of the new objective and we test the method on simulations
first, and next on a real dataset (a Canadian average annual weather cycle, see e.g. [20]).
After a short conclusion in Section 4, we finally prove our results in Section 5. The numerous
constants appearing in the results and the proofs are gathered in the Appendix, for the sake
of readability.

2. A generalized Gaussian prior on the direct links

We use the definition given in formulas (1)-(2) of [18] for the so-called d-dimensional
multivariate generalized Gaussian GN (0, 1, V, β) distribution with mean 0, scale 1, scatter
parameter V ∈ S d++ and shape parameter β > 0. According to the authors, the density takes
the form of

∀ z ∈ Rd, fV, β(z) =
β Γ(d

2
)

π
d
2 Γ( d

2β
) 2

d
2β

√
det(V )

exp

(
− 〈z, V

−1z〉β
2

)

where Γ is the Euler Gamma function.

Figure 1. Marginal shape of the generalized Gaussian distribution (d = 1
and V = 1) for some β < 1 (dotted red), β = 1 (black) and some β > 1
(dotted blue). The noteworthy cases β = 1/2 (Laplace), β = 1 (Gaussian)
and β = +∞ (uniform) are highlighted.

We clearly recognize the Gaussian N (0, V ) setting for β = 1. Moreover, for β = 1/2, it
can be seen as a multivariate Laplace distribution whereas it is known to converge to some
uniform distribution as β → +∞. The marginal shapes (d = 1 and V = 1) of the distribution
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are represented on Figure 1, depending on whether β < 1, β = 1 or β > 1. Our results hold
for all β > 1 but, as will be explained in due course, we shall not theoretically deviate too
much from the Gaussianity in the prior (even if we will allow ourselves some exceptions in
the practical works). The usual Bayesian approach for multiple-output Gaussian regression
having B as matrix of coefficients and R as noise variance consists in a conjugate prior
vec(B) ∼ N (b, R ⊗ L−1) for some information matrix L ∈ S p++ and a centering value b (see
e.g. Sec. 2.8.5 of [22]). In the PGGM reformulation, we have R = Ω−1

yy and B = −Ω t
yx Ω−1

yy

as explained in Section 1, and of course we shall choose b = 0 to meet our purposes. Thus,

vec(Ω t
yx) = −(Ωyy ⊗ Ip) vec(B) ∼ N (0,Ωyy ⊗ L−1)

is a natural prior for the direct links (this is in particular the choice of the authors of [7]).
Following the same logic, let us choose Ωyy ⊗ L−1 for scatter parameter and suppose that

(2.1) vec(Ω t
yx) ∼ GN (0, 1,Ωyy ⊗ L−1, β).

In this way, we can play on the intensity of the constraint we want to bring on Ωyx, from a non-
informative prior to quasi-boundedness through Laplace and Gaussian distributions. This
prior entails an additional smooth term acting as a structural penalization in the objective
(1.4) that becomes

Ln(Ωyy,Ωyx) = − ln det(Ωyy) + 〈〈S (n)
yy ,Ωyy〉〉+ 2 〈〈S (n)

yx ,Ωyx〉〉
+ 〈〈S (n)

xx ,Ω
t
yx Ω−1

yy Ωyx〉〉+ η 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉β + λ |Ωyy|−1 + µ |Ωyx|1(2.2)

with three regularization parameters (λ, µ, η). The smooth penalization lends weight to the
prior on Ωyx and thereby plays on the extent of shrinkage and structuring through β, whereas
|Ωyx|1 and |Ωyy|−1 are designed to induce sparsity. One can note that this is closely related
to the log-likelihood of a hierarchical model of the form{

Yi |Xi,Ωyx ∼ N (−Ω−1
yy ΩyxXi, Ω−1

yy )
vec(Ω t

yx) ∼ GN (0, 1,Ωyy ⊗ L−1, β)

where the emphasis is on Ωyx in the prior and Ωyy remains a fixed parameter, although
it is important to see that, in this work, the estimation step does not rely on a posterior
distribution. The following proposition is related to the existence of a global minimum for
our objective (2.2) with respect to (Ωyy,Ωyx) as soon as β > 1.

Proposition 2.1. Assume that β > 1. Then, Ln(Ωyy,Ωyx) defined in (2.2) is jointly convex
with respect to (Ωyy,Ωyx).

Proof. See Section 5.2. �
Now and throughout the rest of the paper, denote by θ = (Ωyy,Ωyx) ∈ Θ = S q++ × Rq×p

the (q × (q + p))-matrix of parameters of the model, with true value θ ∗ = (Ω∗yy,Ω
∗
yx). As it

is usually done in studies implying sparsity, we will also consider S of cardinality |S|, the
true active set of θ ∗ defined as S = {(i, j), θ ∗i,j 6= 0}, and its complement S̄. Our results
also depends on some basic assumptions related to the true covariances of the Gaussian
observations, and we will assume that the following holds.

(H1) Σ∗xx ∈ S p++, Ω∗yy ∈ S q++, B 6= 0 (that is, Ω∗yx 6= 0) and Ω∗yx LΩ∗ tyx ∈ S q++.

This is a natural hypothesis in our framework, in particular we suppose that there is at least
a link between X and Y .
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Remark 2.1 (Null model). Even if it is of less interest, our study does not exclude the case
where Ω∗yx = 0. Indeed, we might as well consider that Ω∗yx = 0 and get the same results,
but some constants should be refined. On the other hand, Σ∗xx ∈ S p++ and Ω∗yy ∈ S q++ are
crucial.

Under (H1), the random matrices

(2.3) An = (S (n)
yy − Σ∗yy)− Ω∗−1

yy Ω∗yx (S (n)
xx − Σ∗xx) Ω∗ tyx Ω∗−1

yy with ha = |An|∞
and

(2.4) Bn = 2 ((S (n)
yx − Σ∗yx) + Ω∗−1

yy Ω∗yx (S (n)
xx − Σ∗xx)) with hb = |Bn|∞

are going to play a fundamental role, especially ha and hb. Let us now provide some the-
oretical guarantees for the estimation of θ in our model, provided that the regularization
parameters are located in a particular area (λ, µ, η) ∈ Λ. Consider the penalized likelihood
`λ,µ,η(θ) given in (2.2), and estimate θ by the global minimum

(2.5) θ̂ = arg min
Θ

`λ,µ,η(θ)

obtained for β > 1. To facilitate reading, we postpone the precise definition of the numerous
constants to the Appendix. We recall that p is the number of predictors, q is the number of
responses and |S| is the size of the true active set.

Theorem 2.1. Fix dλ > cλ > 1, dµ > cµ > 1, eλ > 0 and eµ > 0, and assume that the
regularization parameters satisfy (λ, µ, η) ∈ Λ = [cλ ha, dλ ha]× [cµ hb, dµ hb]× [0, η], where

η =
min

{
(cλ−1)λ
cλ `a

, (cµ−1)µ

cµ `b
, eλ ha

`a
, eµ hb

`b

}

β sβ−1
L

for some non-random constants sL, `a and `b defined in (A.2) and (A.3), and the random
constants ha and hb given above. Then, under (H1), there exists absolute constants b1 > 0
and b2 > 0 such that, for any 0 < b3 < 1 and as soon as n > n0, with probability no less that
1− e−b2n − b3, the estimator (2.5) satisfies

‖θ̂ − θ ∗‖F 6
16m∗ cλ,µ

√
|S|

γr,η,β,p

√
ln(10(p+ q)2)− ln(b3)

n

where γr,η,β,p, cλ,µ and m∗ are technical constants defined in (A.7), (A.8) and (A.9), respec-
tively, and where the minimal number of observations is given by

n0 = max

{
(ln(10(p+ q)2)− ln(b3)) c2

λ,µ |S| (16m∗)2

r∗ 2 γ2
r,η,β,p

,

b1 (q + dsαe ln(p+ q)), ln(10(p+ q)2)− ln(b3)

}
(2.6)

with sα defined in (A.5) and r∗ in (A.6).

Proof. See Section 5.3. �
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Among all these constants, we can note that sL, `a, `b, ha and hb are useful to properly
describe and restrict Λ, the domain of validity of (λ, µ, η) for the theorem to hold. Once Λ
is fixed, the other constants take part in the upper bound of the estimation error. However,
as it stands, the theorem is very difficult to interpret. The next two remarks seem essential
to have an overview of the orders of magnitude involved for the number of observations, for
p and q, for the estimation error and for the regularization parameters.

Remark 2.2 (Validity band). Of course the degree of sparsity |S| is crucial in the estimation
error, but it also plays an indirect role in the probability associated with the theorem and
in the numerous constants. In virtue of Lemma 5.12, we can hope that λ and µ have a wide
validity band, by playing on cλ, cµ, dλ and dµ. In turn, η also has a non-negligible area of
validity, provided of course that `a, `b and sL, all depending on combinations between Ω∗yx,
Ω∗−1
yy and L, are small enough. Accordingly, it would be to our advantage if L was both

sparse and not chosen with too large elements. As it always appears together with η, we
may as well take a normalized version of L (e.g. |L|∞ 6 1).

Remark 2.3 (Order of magnitude). Even if the result holds for any β > 1, the terms ∝ pβ−1

appearing in some upper bounds of the proof clearly argue in favor of a moderate choice
β ∈ [1, 1 + ε] for a small ε > 0, depending on p. In other words, we cannot deviate too much
from the Gaussianity in the prior on the direct links. For example in a very high-dimensional
setting (p ∼ 107), choosing ε = 0.1 leads to pβ−1 ≈ 5 whereas we may try larger values of ε
for the more common high-dimensional settings p ∼ 103 or p ∼ 104. By contrast, we can see
that n0 must (at least) grow like q for the theorem to hold, so high-dimensional responses
are excluded. However in multiple-output regressions, even when p is extremely large, q
generally remains small. According to all these considerations, we may roughly say that, in
a high-dimensional setting with respect to p,

‖θ̂ − θ ∗‖F .
√
|S| ln p

n

with a large probability, under a suitable regularization of the model. We recognize the usual
terms appearing in the error bounds of regressions with high-dimensional covariates, like the
`2 error of the Lasso (see e.g. Chap. 11 of [11]). This is the same bound as in [29], but our
additional structural penalty restricts Λ.

3. Simulations and real dataset

The minimization problem (2.5) is solved using a coordinate descent procedure, alternating
between the computations of

Ω̂yy = arg min
S q++

`λ,µ,η(Ωyy, Ω̂yx) and Ω̂yx = arg min
Rq×p

`λ,µ,η(Ω̂yy,Ωyx).

Each step is done by an Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN) algorithm
(see e.g. [1]). The first subproblem is performed through half-vectorization (vech) to ensure
symmetry and we set the objective to +∞ on S̄ q++ to ensure positive definiteness of the
solution. The coordinate descent is stopped when

‖Ω̂ (t)
yy − Ω̂ (t−1)

yy ‖2 6 εmax(1, ‖Ω̂ (t−1)
yy ‖2) and ‖Ω̂ (t)

yx − Ω̂ (t−1)
yx ‖2 6 εmax(1, ‖Ω̂ (t−1)

yx ‖2)
7
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following two consecutive iterations t− 1 and t, where ε > 0 is a small threshold depending
on the desired precision. We are now going to try our method on synthetic data first, and
then on a real dataset. We will pay attention to the role played by β, in particular we will
see that it can be useful as well as counterproductive, depending on the situations.

3.1. Simulations. For each scenario, we first generate i.i.d. standard Gaussian vectors
Xi ∈ Rp, then Yi ∈ Rq is simulated according to the setting and we estimate Ωyy and Ωyx.
From the relations detailed in Section 1, we recall that Yi = B tXi+Ei with Ei ∼ N (0, R) is
an equivalent formulation, provided that B = −Ω t

yx Ω−1
yy and R = Ω−1

yy . In a compact form,
we may also write

Y = XB + E or vec(Y ) = (Iq ⊗X) vec(B) + vec(E)

where the i-th row of Y is Y t
i and the i-th row of X is X t

i . Thus, we can estimate B using
the Lasso (Las) and the Group-Lasso (GLas) in the vectorized form, to provide a basis for
comparison between our method and the usual penalized methods. The Lasso penalty is
obviously ‖vec(B)‖1 to promote coordinate sparsity while, for the Group-Lasso, we use the
penalty ‖B1‖2 + . . . + ‖Bp‖2 where Bi is the i-th row of B, to promote row sparsity and
exclude altogether some predictors from the model. We also implement some variants of
our generalized graphical model (GenGm). The case where Ωyy = R−1 is known and does
not need to be estimated is the Oracle (Or) and the case where η = 0 so that β has no
influence is the classic PGGM (Gm). The case where λ = 0 and β = 1 is called the Spring
(Spr) by the authors of [7]. We will focus on structured scenarios. With no structure in Ωyx,
there is no reason why our method should outperform the usual PGGM. In a completely
random setting, we have observed that all PGGM procedures perform identically. In fact, a
slight gain can be obtained compared to Spr and Gm simply due to the flexibility induced
by the additional parameter (Spr and Gm are particular cases of GenGm). However, that
clearly cannot counterbalance the extended computational times, and GenGm should not
be used for such situations. The calibration of the regularization parameters is made using
a cross-validation on a training set of size nt = 150 and the accuracy is evaluated thanks to
the mean squared prediction error (MSPE) on a validation set of size nv = 1000,

(3.1) MSPE =

∥∥Y +X Ω̂ t
yx Ω̂−1

yy

∥∥2

F

q nv
.

Due to the large amount of treatments, the grids for cross-validation are not very sharp here
but they will be carefully refined for the real datasets of the next section. The covariance
between the outputs is R = (r |i−j|)16 i, j 6 q for r = 1

2
and we work with p = 100. Each

scenario is repeated N = 500 times and GenGm is evaluated with numerous values of β,
from 0.25 to 2 with a step of 0.25. The results of the following scenarios are summarized on
Figures 2, 3 and 4 below, respectively.

→ Scenario 1 (q = 1). We draw ωi = ±1
2

for i = 1, . . . , 10 and we fill 10 randomly
selected sections of size 3 in Ωyx with ωi. The remaining part of Ωyx is 0.

→ Scenario 2 (q = 2). We draw ω = ±1
2

and one randomly selected row of Ωyx is filled
with ω while the other is identically 0.

→ Scenario 3 (q = 3). We draw ωi = ±1
2

and we fill a randomly selected section of size
30 on the i-th row of Ωyx with ωi, for i = 1, 2, 3. The remaining part of Ωyx is 0.
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The row structure is promoted by a normalized first finite difference operator

(3.2) L =
1

2




1 −1 0 . . . 0

−1 2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 2 −1

0 . . . 0 −1 1




which, through Ωyx LΩ t
yx, tends to penalize the difference between two consecutive values

on a same row (as does Fused-Lasso with `1 penalty). Yet, the Fused-Lasso is not a suitable
alternative to GLas and Las in this precise context because B = −Ω t

yx Ω−1
yy is not supposed

to have a row structure even if Ωyx has one. For this choice of L, one can note that, in the
particular case where R = diag(σ 2

1 , . . . , σ
2
q ),

〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉β =

(
q∑

i=1

σ 2
i

p∑

j=2

(ωi,j − ωi,j−1)2

)β
>

q∑

i=1

σ 2β
i

p∑

j=2

|ωi,j − ωi,j−1| 2β

where ωi,j is the (i, j)-th element of Ωyx, so we may fairly expect that β > 1 is going to
strengthen the smoothness of the estimation and to enforce all the more the structuring.

Remark 3.1 (Validity of the hypotheses). We could as well add a small diagonal element in
the matrix L defined above, positive semi-definite but not invertible. The resulting effect
would be a negligible ridge-like penalization on the elements of Ωyx. This is not required
for the estimation procedure but useful for Theorem 2.1 to hold (see e.g. (H1)). Likewise,
it seemed interesting to test some settings with β < 1 even if the theory developped in the
paper does not give any guarantee for them, as a basis for comparison.

Figure 2. Mean squared prediction error for N = 500 repetitions of the
weakly structured Scenario 1.

First of all, one can observe that Las and GLas are left behind in all our simulations.
This is not surprising since the covariance between the outputs cannot be recovered with the
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Figure 3. Mean squared prediction error for N = 500 repetitions of the
strongly structured Scenario 2.

Figure 4. Mean squared prediction error for N = 500 repetitions of the
strongly structured Scenario 3.

standard Lasso, at least for q > 2. Generally, GLas remains more robust compared to Las,
probably due to the high level of sparsity in Ωyx approximately passed to B (provided that
the covariances in R are small enough), and exploited by the grouping effect. In the weakly
structured setting (Scenario 1), we also observe that, as expected, all PGGM procedures
perform almost identically, with obviously an advantage for Or (although small, illustrating
the accuracy of the estimation). In the strongly structured settings (Scenarios 2 and 3), Gm
gives results below the expected level, because it is not designed to promote such layouts.
On the contrary, thanks to this choice of L showing here great efficiency, GenGm and Spr are
doing pretty well. Note that, in this context, GenGm with β = 1 is almost the same as Spr
since, q being small, λ does not play a crucial role. However, some empirical facts draw our
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attention: the prediction error decreases with β to some extent, but the most interesting fact
seems to be the simultaneous decrease of its variance. It is likely that the increasing pressure
exerted by β on the estimation procedure leads to a higher homogeneity in the numerical
results, despite the repetitions of random experiments under random settings. In other
words, the structuring seems to be strengthened and we also observe that the convergence
of the algorithm is faster, which logically follows from the latter remarks (especially clear
when we compare β = 0.25 and β = 2). On the other hand, for the opposite reason, we
notice that the predictions are hardly better than Gm (even worse in some cases), both on
average and in terms of variability, for β < 1, and these simulations tend to undermine such
values of the hyperparameter. On the whole, GenGm with β > 1 might be a sound approach
for practitioners who place a high priority on structuring the estimations, even if Remark
3.2 below should probably temper this statement. To conclude, let us consider the strongly
structured scenarios with L = Ip (without structuring) in the Oracle setting with β = 2, and
let us compare the results with those of Figures 3 and 4, obtained with the correct version of
L given in (3.2). The results are displayed on Figure 5 where we can see that the benefit of
structuring is manifest. Unsurprisingly, the results without structuring are close to those of
Gm since L = Ip only strengthens the shrinkage effect with ridge-like additional penalties.

Figure 5. Mean squared prediction error for N = 500 repetitions of the
strongly structured Scenario 2 (left) and Scenario 3 (right) for Or, Gm and
the unstructured Or (L = Ip), with β = 2.

Remark 3.2 (Computational time). To estimate (Ωyy,Ωyx) in the model Spr, the authors of
[7] use a very judicious and efficient method relying, in each step of the coordinate descent
procedure, on a direct computation of the estimation of Ωyy together with an Elastic-Net
estimation of Ωyx. This is possible for λ = 0 and β = 1, but unfortunately cannot be
implemented in the general setting. As a result, computational times remain an issue that
should be paid attention to.

Remark 3.3 (Oracle-type errors). The mean value of the estimation errors ‖Ω̂yx − Ωyx‖2
F

leads to the same kind of observations for the models being compared in the simulations.
But the minimal prediction error does not always coincide with an optimal support recovery
due to the shrinkage effect on the estimation of Ωyx, when the coefficients or the covariates
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are not very contrasting. The so-called F -score is given by

F =
2 pr re
pr + re

where pr =
TP

TP + FP
and re =

TP

TP + FN

are the precision and the recall, respectively, and where T/F and P/N stand for true/false
and positive/negative. In the strongly structured scenarios, F is generally located between
0.60 and 0.65, and a deeper analysis shows that a proportion of more than 0.99 of true
non-zero values are recovered (that is, the part of the true active set S related to Ωyx). If
the models are not calibrated to reach the best prediction error but the best F -score, F
regularly exceeds 0.90, at least for the structured procedures.

Nevertheless, Scenarios 2 and 3 are very strongly structured, more than one would expect
from an unknown underlying generating process, and the real dataset of the next section is
going to highlight the fact that the improvement may be hardly noticeable with respect to
β. But we will see that β can still be useful for variable selection.

3.2. A real dataset. The dataset available as CanadianWeather in the R package fda

contains daily temperature and precipitation at 35 different locations in Canada, averaged
over annual reports starting in 1960 and ending in 1994 (see e.g. [20]). We intend to look
at the direct links between the minimal and maximal rainfall (on the log10 scale) and the
temperature pattern in the 35 weather stations, so as to identify the times of the year that
have a strong effect on rainfall (positive as well as negative). In this context, n = 35, q = 2
and p = 365. Figure 6 shows temperature and log-precipitation measured over a year in
Montreal, chosen as an example, together with the empirical distribution of the minimal and
maximal log-precipitation for the 35 weather stations. We can note that, since the data are
averaged over numerous years, outliers are unlikely even for the extremes (min and max).

Figure 6. Temperature and log-precipitation measured over a year in
Montreal (left). Empirical distribution of the minimal and maximal log-
precipitation for the 35 weather stations (right).

Some authors (see e.g. [24]) have already highlighted the pertinence of using the matrix
L defined in (3.2) in this dataset, because the predictors are ordered temporally so that
the selection of isolated days instead of relevant sequences of days seems an unreliable pro-
cedure for statistical interpretation. To assess the models, we repeat N = 100 times the
following experiment: nt = 25 observations are randomly selected for calibration (via 2-fold
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cross-validation) and estimation, the remaining nv = 10 observations are used to compute
the MSPE (3.1) related to the prediction of the minimum (minp) and maximum (maxp)
precipitation. We can see on Figure 7 that all structured PGGM perform almost identically,
with the phenomenon described in the previous section still visible but to a lesser extent. We
can even notice that structuring is hardly beneficial for this dataset, from a purely numerical
point of view. This conclusion can also be found in [24], where the author compares the
structured Elastic-Net with unstructured alternatives to predict the 0.25-, 0.50- and 0.75-
quantiles of the log-precipitation, through independent regressions. But we will see that, in
terms of variable selection and statistical interpretation, L and β still have a substancial role
to play.

Figure 7. Mean squared prediction error for N = 100 repetitions of the
experiment. GenGm for β ∈ {0.5, 1, 1.5, 2} is compared with Spr, Gm, Las
and GLas.

The point is that we have observed that the best prediction error does not usually coincide
with a sparse solution (see Remark 3.3 above) when the coefficients or the covariates are
not very contrasting. In particular, this was the case of our simulation study with ±1

2

coefficients and N (0, 1) covariates. So, just as they look at the Lasso’s regularization paths,
practitioners may choose the desired degree of sparsity, depending on p/n, by playing with the
hyperparameters. Here, on the basis of the MSPE, most of the time we must retain µ� 10−2

and only a few direct links are set to zero. To look for sequences of days directly related to
minp and maxp, we decided to constraint µ > 10−2 and focus on variable selection. The active
set of Ωyx is evaluated on the basis of nt = 25 randomly chosen observations. The experiment
is repeated N = 100 times, and the locations having a frequency of occurrence that exceeds
0.5 are retained (or, equivalently, those whose estimates have a non-zero median). This can
be seen as a measure of variable importance. The results are given on Figures 8 and 9 below
for minp and maxp, respectively, with a fixed set of regularization parameters and increasing
values of β. The objective is to show the influence of the latter, all other things being equal.
The colored areas highlight the days having a frequency of occurrence, represented by gray
crosses, that exceeds 0.5 in the N = 100 repetitions of the experiment. Note that, since we
retain λ = 0 in these experiments, GenGm for β = 1 coincides with Spr. We can see that the
increasing pressure exerted by β on the estimation procedure tends to refine the selection by
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giving priority to the most important variables and by dropping the others much more easily,
at the cost of prediction results: we are undoubtedly in a selection process. The sequence of
inclusions

Ŝβ2 ⊂ Ŝβ1 for β1 < β2

that we observe for the estimated active sets is clearly a guarantee of quality for the selected
variables.

Figure 8. Variable selection for minp by GenGm with (λ, µ, η) = (0, 0.05, 1)
and, from top to bottom, β ∈ {0.5, 1, 1.5, 2}.

Figure 9. Variable selection for maxp by GenGm with (λ, µ, η) = (0, 0.05, 1)
and, from top to bottom, β ∈ {0.5, 1, 1.5, 2}.

The median values of the estimated direct links between the temperature of the days and
the pair (minp,maxp) are represented on Figure 10 together with the estimated regression
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coefficients, for β = 2. We recall that the relation B = −Ω t
yx Ω−1

yy simply lead to

B̂ = −Ω̂ t
yx Ω̂−1

yy .

We detect sequences of influent days in November, December, January and February, es-
pecially related to minp, positively at the end of the year and negatively at the beggining.
This is broadly consistent with the analysis of [24] – even if the responses are not extremes
but quantiles in it – with however two differences: the regression coefficients associated with
maxp are much lower compared to minp whereas it is not that clear in the reference, and
an activity is also detected between July and August. The main explanation, at least for
the first of them, probably lies in the use of graphical models that take into account the
correlation between responses. Indeed, as can be seen on Figure 11 which gives an overview
of the estimation of R obtained from the repeated experiments, a non-zero correlation is
detected between the responses (≈ 0.32). The influence of November and December on all
quantiles and that of January and February on the 0.75-quantile in [24] might actually be
an artificial effect of the correlation with the 0.25-quantile. This is what our study suggests
by highlighting minp compared to maxp: the ‘real’ effect appears to be on minp whereas
maxp seems to react only through a phenomenon of correlation with minp. From this point
of view, the interest of graphical models instead of independent regressions is particularly
obvious.

Figure 10. Estimated direct links (top) and regression coefficients (bottom)
for the pair (minp,maxp) by GenGm with (λ, µ, η) = (0, 0.05, 1) and β = 2,
after the N = 100 experiments. Dotted lines divide the panel into months.

Let us also mention that, interestingly enough, we notice that the role of η tends to
depreciate for the large values of β. For example, for the same regularization parameters
(λ, µ) = (0, 0.05) and β = 2, the difference between the estimated active sets for η = 0.1
and η = 1 is almost negligible (depending on the experiments, between 1 and 3 days are
concerned, on average). Based on these studies and observations, we might conclude that β
is insignificant when we are interested in the best prediction error on a validation set (even
counterproductive with respect to computational times, e.g. compared to Spr), whereas it
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Figure 11. Estimated correlation between minp and maxp by GenGm with
(λ, µ, η) = (0, 0.05, 1) and β = 2, after the N = 100 experiments. The off-
diagonal entry is approximately 0.32.

seems to have a substancial role to play when focusing on selection, by accelerating the
discrimination of variables. In the first case, η has to be carefully adjusted while in the
second case, β will quickly help to reach the desired sparsity.

Remark 3.4 (Structure matrix). For the simulations and the real dataset, we have used the
popular first finite difference operator given in (3.2). Other examples can be found in the
literature, like the promotion of a genetic distance for genomic selection in Brassica napus [7]
or the bidimensional discretization of the Laplacian to work on handwritten digit recognition
[24]. More generally, L can be used in a classic Bayesian prior supposed to promote some
covariance structure on the direct links, with no ‘physical’ structuring in mind (like temporal,
spatial or genetic proximity).

4. Conclusion

In conclusion, our work is a generalization of [29], using the same technical tools to estab-
lish an upper bound on the estimation error when a prior on the direct links generates an
additional structural penalty in the objective, provided that the model is suitably regular-
ized. Our work is also an improvement of [7] since, while being inspired by the methodology
of the authors, we generalize the prior and give some theoretical guarantees. The empirical
study shows that the hyperparametrization in the prior, although more expensive in adjust-
ing the parameters, is likely to refine the selection results but clearly, this does not appear
as a crucial improvement compared to the two previous points. Let us conclude the paper
by highlighting two weaknesses that might be trails for future studies. On the one hand, the
Laplace distribution is often used as a prior in the Bayesian Lasso (see e.g. Sec. 6.1 of [11]).
However, our reasonings do not allow β = 1/2, which may correspond to a multivariate
Laplace distribution on the direct links. Combined with the first finite difference operator
L, the choice β = 1/2 could generate a Fused-Lasso-type penalty. In this regard, it would be
challenging and interesting to obtain some theoretical guarantees for β > 1/2 and not only
for β > 1, even if our probably too brief simulation study does not encourage the choice of
β < 1. On the other hand, λ = 0 is a natural choice when q is small (this is in particular the
configuration of [7]), not to mention that it is computionally faster. But, the proof of our
theorem needs λ > cλ ha > 0 to hold. We think that a reasoning enabling to deal with λ = 0
should also be beneficial to the study. More generally, it would be instructive to consider a
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very high-dimensional setting (p � n and not only p ∼ 102 although always larger than n,
as in our experiments). Such studies should follow with omic data.
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5. Technical proofs

We start in a first part by some useful linear algebra lemmas that will be repeatedly used
subsequently, well-known for most of them. In a second part, we prove the joint convexity
of the objective and our main result.

5.1. Linear algebra.

Lemma 5.1. Let A ∈ S d+ and U ∈ Rd×`. Then, U tAU ∈ S `+.

Proof. Since A is symmetric with non-negative eigenvalues, there is an orthogonal matrix
P such that A = PDP t with D = diag(sp(A)) ∈ S d+. Thus, for all v ∈ R`, it follows that

〈v, U tAU v〉 = ‖D1/2 P t U v‖2 > 0. �
Lemma 5.2. Let A ∈ S d++ and B ∈ S d+. Then for all i, λi(AB) > 0.

Proof. The equality AB = A1/2 (A1/2BA1/2)A−1/2 shows that AB and A1/2BA1/2 are sim-
ilar, so they must share the same eigenvalues. From Lemma 5.1, λi(A

1/2BA1/2) > 0 . �
Lemma 5.3. Let A ∈ S d+ and B ∈ S d+. Then,

λmin(A) tr(B) 6 tr(AB) 6 λmax(A) tr(B).

Proof. Since A− λmin(A)Id ∈ S d+ and B ∈ S d+,

tr((A− λmin(A)Id)B) = tr(B1/2 (A− λmin(A)Id)B
1/2) > 0

from Lemma 5.1, thus tr(AB) > λmin(A) tr(B). The other inequality is obtained through
λmax(A)Id − A ∈ S d+. �

Lemma 5.4. Let A ∈ S d++ and B ∈ S d+. Then,

λmin(A)λmin(B) 6 λmin(AB) and λmax(AB) 6 λmax(A)λmax(B).

Proof. On the one hand, λmax(AB) 6 ‖AB‖2 6 ‖A‖2 ‖B‖2 = λmax(A)λmax(B), since A and
B are symmetric and since, from Lemma 5.2 and by hypothesis, all eigenvalues appearing
in the relation are non-negative. Suppose now that B is invertible so that both A−1 and
B−1 belong to S d++. Then, λmax((AB)−1) 6 λmax(A−1)λmax(B−1) and this immediately gives
λmin(AB) > λmin(A)λmin(B). If B is not invertible, the relation trivially holds since we still
have λmin(AB) > 0 from Lemma 5.2. �
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Lemma 5.5. Let A ∈ S d+ and U ∈ Rd×`. Then,

λmin(A) ‖U‖2
F 6 tr(U tAU) 6 λmax(A) ‖U‖2

F .

Proof. Denote by ui the i-th column of U . It is not hard to see that the i-th diagonal element
of U tAU is u tiAui > λmin(A) ‖ui‖2 > 0. Thus,

tr(U tAU) =
∑̀

i=1

u tiAui > λmin(A)
∑̀

i=1

‖ui‖2 = λmin(A) ‖U‖2
F .

The upper bound stems from 0 6 u tiAui 6 λmax(A) ‖ui‖2. �
Lemma 5.6. Let A and B be symmetric matrices of same dimensions. Then,

λmin(A) + λmin(B) 6 λmin(A+B) and λmax(A+B) 6 λmax(A) + λmax(B).

Proof. These are just two special cases of Weyl inequalities. We refer the reader to Thm.
4.3.1 of [12], for example. �

5.2. Convexity of the objective. We know from Prop. 1 of [29] and the convexity of the
elementwise `1 norm that Ln(Ωyy,Ωyx)− η 〈〈L,Ω t

yx Ω−1
yy Ωyx〉〉β is itself convex, but it remains

to show that this is still the case with the additional smooth penalty.

Proof of Proposition 2.1. Recall that Θ = S q++×Rq×p and consider the mapping Φ : Θ→ S p+
defined as

∀ (A,B) ∈ Θ, Φ(A,B) = B tA−1B.

We can already note from Lemma 5.1 that tr(Φ(A,B)) > 0. Moreover, for all 0 6 h 6 1
and all Zi = (Ai, Bi) ∈ Θ, i = 1, 2, it is easy to see that

(5.1) Sh(Z1, Z2) = hΦ(Z1) + (1− h) Φ(Z2)− Φ(hZ1 + (1− h)Z2)

is the Schur complement of hA1 + (1− h)A2 in the matrix

(5.2) Mh(Z1, Z2) = h

(
A1 B1

B t
1 B t

1 A
−1
1 B1

)
+ (1− h)

(
A2 B2

B t
2 B t

2 A
−1
2 B2

)
.

But the decomposition
(
A1/2 A−1/2B

0 0

)t(
A1/2 A−1/2B

0 0

)
=

(
A B
B t B tA−1B

)

directly shows that Mh(Z1, Z2) in (5.2) is symmetric and positive semi-definite. It is well-
known (see e.g. Appendix A.5.5 of [4]) that in that case, the Schur complement (5.1) must
also be positive semi-definite. Consequently, for Zi = (Ωi,yy,Ωi,yxL

1/2), i = 1, 2, taking the
trace of Sh(Z1, Z2) and considering β > 1,

〈〈L, P t
h Q

−1
h Ph〉〉β = (tr(Φ(hZ1 + (1− h)Z2)))β

6 (h tr(Φ(Z1)) + (1− h) tr(Φ(Z2)))β

= (h 〈〈L,Ω t
1,yx Ω−1

1,yy Ω1,yx〉〉+ (1− h) 〈〈L,Ω t
2,yx Ω−1

2,yy Ω2,yx〉〉)β

6 h 〈〈L,Ω t
1,yx Ω−1

1,yy Ω1,yx〉〉β + (1− h) 〈〈L,Ω t
2,yx Ω−1

2,yy Ω2,yx〉〉β

where Ph = hΩ1,yx+ (1−h) Ω2,yx and Qh = hΩ1,yy + (1−h) Ω2,yy. This convexity inequality
concludes the proof. �
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5.3. Theoretical guarantees.

Proof of Theorem 2.1. Let Rn(θ) be the the smooth part of the objective (2.2),

Rn(θ) = − ln det(Ωyy) + 〈〈S (n)
yy ,Ωyy〉〉+ 2 〈〈S (n)

yx ,Ωyx〉〉
+ 〈〈S (n)

xx ,Ω
t
yx Ω−1

yy Ωyx〉〉+ η 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉β.(5.3)

For any θ ∈ Θ and t ∈ R, by a Taylor expansion,

(5.4) Rn(θ ∗ + t (θ − θ ∗)) = Rn(θ ∗) + t 〈〈∇Rn(θ ∗), θ − θ ∗〉〉+ et(θ, θ
∗)

for some second-order error term et(θ, θ
∗). Consider the reparametrization

(5.5) φ(t) = Rn(θ ∗ + t (θ − θ ∗))
so that φ′(0) = 〈〈∇Rn(θ ∗), θ − θ ∗〉〉. Let δθyy = Ωyy − Ω∗yy and δθyx = Ωyx − Ω∗yx, let also
δθ = θ − θ ∗ in a compact form. The estimation error is denoted

(5.6) δϑ = θ̂ − θ ∗ = (Ω̂yy − Ω∗yy, Ω̂yx − Ω∗yx) = (δϑyy, δϑyx).

Before we start the actual proof, some additional lemmas are needed. They constitute a
local study in a sort of r∗-neighborhood of θ ∗ that we define as

(5.7) Nr,α(θ ∗) =
{
θ ∈ Θ, ‖δθ‖F 6 r∗ and |[δθ]S̄|1 6 α|[δθ]S|1

}
.

Our strategy can be summarized as follows:

→ (Lemma 5.9) Show that there exists a configuration for the regularization parameters
(λ, µ, η) so that the estimation error satisfies |[δϑ]S̄|1 6 α|[δϑ]S|1 for some α > 0.

→ (Lemma 5.10) Find some r∗ > 0 and γr,η,β,p > 0 such that e1(θ, θ ∗) > γr,η,β,p‖δθ‖2
F as

soon as θ ∈ Nr,α(θ ∗).
→ (Lemma 5.11) Exploit this result to show that the estimation error must also satisfy
‖δϑ‖F 6 r∗ provided that max{ha, hb} is small enough.

→ (Lemma 5.12) Conclude that the theorem holds with high probability, provided that
n is large enough.

For the sake of readability, we refer the reader to the Appendix for the numerous constants
that are about to appear in the following lemmas and proofs. Thereafter, Nr,α(θ ∗) will
always refer to α in (A.4) and r∗ in (A.6), while the second hypothesis (H2) given below is to
be assumed with the smallest integer greater than sα in (A.5). This is a random hypothesis,
which will be controlled with a probability, related to the proximity between the empirical
covariance and the true covariance of the predictors, since we recall that S (n) has no reason to
be an excellent approximation of Σ∗ when p� n. This is also assumed by the authors of [29],
it is a kind of restricted isometry propertie (RIP), well-known in high-dimensional studies. In
particular, we will see through Lemma 5.12 that it is satisfied with high probability provided
that n is large enough.

(H2) ∀u 6= 0 such that |u|0 6 dsαe,
1

2
u t Σ∗xx u 6 u t S (n)

xx u 6 3

2
u t Σ∗xx u.

In addition, λmax(Ω∗yx S
(n)
xx Ω∗ tyx) 6

7

5
λmax(Ω∗yx Σ∗xx Ω∗ tyx).

The next two lemmas give some bounds for expressions that will appear repeatedly.
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Lemma 5.7. Under (H1) and (H2), for all θ ∈ Nr,α(θ ∗), we have the bound

λmax(Ω−1
yy Ωyx S

(n)
xx Ω t

yx) 6 ωS

where ωS is given in (A.1). In addition,

tr(δθyx S
(n)
xx δθ tyx) >

λmin(Σ∗xx)

10
‖δθyx‖2

F .

Proof. Similar reasonings may be found in the proofs of Lem. 1-2 of [29]. We simply reworked
the constants to make them stick to our study. �

Lemma 5.8. Under (H1), for all θ ∈ Nr,α(θ ∗), we have the bounds

λmin(Ω−1
yy Ωyx LΩ t

yx) > ωL and λmax(Ω−1
yy Ωyx LΩ t

yx) 6 ωL

where ωL and ωL are given in (A.1). As a corollary,

p ωL 6 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉 6 p ωL.

Proof. From Lemmas 5.1 and 5.6,

2λmin(Ωyx LΩ t
yx) > 2

(
λmin(Ω∗yx LΩ∗ tyx) + λmin(δθyx LΩ∗ tyx + Ω∗yx L δθ

t
yx)
)

> 2
(
λmin(Ω∗yx LΩ∗ tyx)− ‖δθyx LΩ∗ tyx + Ω∗yx L δθ

t
yx‖2

)

> 2
(
λmin(Ω∗yx LΩ∗ tyx)− 2 ‖δθyx‖F ‖LΩ∗ tyx‖2

)
> λmin(Ω∗yx LΩ∗ tyx)

as soon as ‖δθyx‖F 6 r∗. From Lemma 5.4, we get

λmin(Ω−1
yy Ωyx LΩ t

yx) >
λmin(Ωyx LΩ t

yx)

λmax(Ωyy)
>
λmin(Ω∗yx LΩ∗ tyx)

4λmax(Ω∗yy)

where the inequality in the denominator comes from λmax(Ωyy) 6 λmax(Ω∗yy) + λmax(δθyy),
via Lemma 5.6, and the fact that λmax(δθyy) 6 ‖δθyy‖F 6 r∗ 6 λmax(Ω∗yy). For the upper
bound, a similar logic gives, with Lemma 5.5,
√
λmax(Ωyx LΩ t

yx) 6
√
λmax(Ω∗yx LΩ∗ tyx) +

√
tr(δθyx L δθ tyx)

6
√
λmax(Ω∗yx LΩ∗ tyx) + ‖δθyx‖F

√
λmax(L) 6

√
2λmax(Ω∗yx LΩ∗ tyx)

for ‖δθyx‖F 6 r∗. It follows from Lemma 5.4 that

λmax(Ω−1
yy Ωyx LΩ t

yx) 6
λmax(Ωyx LΩ t

yx)

λmin(Ωyy)
6

4λmax(Ω∗yx LΩ∗ tyx)

λmin(Ω∗yy)

where the inequality in the denominator comes from λmin(Ωyy) > λmin(Ω∗yy) + λmin(δθyy),
via Lemma 5.6, and the fact that 2λmin(δθyy) > −2 ‖δθyy‖F > −2 r∗ > −λmin(Ω∗yy). The
corollary that concludes the lemma is now immediate. �

Lemma 5.9. Assume that λ, µ and η are chosen according to the configuration of the
theorem. Then, under (H1), the estimation error satisfies

|[δϑ]S̄|1 6 α |[δϑ]S|1
where α > 0 is given in (A.4).
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Proof. Taking t = 1 in the Taylor expansion (5.4) with θ = θ̂ and considering the definition
of φ in (5.5), by convexity,

Rn(θ̂)−Rn(θ ∗) > φ′(0).

The first derivative of φ will be explicitely computed in (5.11). For t = 0, we find

φ′(0) = −〈〈Ω∗−1
yy , δϑyy〉〉+ 〈〈S (n)

yy , δϑyy〉〉+ 2 〈〈S (n)
yx , δϑyx〉〉

+ 2 〈〈S (n)
xx ,Ω

∗ t
yx Ω∗−1

yy δϑyx〉〉 − 〈〈S (n)
xx ,Ω

∗ t
yx Ω∗−1

yy δϑyy Ω∗−1
yy Ω∗yx〉〉

+ ηβ sβ−1
L

[
2 〈〈L,Ω∗ tyx Ω∗−1

yy δϑyx〉〉 − 〈〈L,Ω∗ tyx Ω∗−1
yy δϑyy Ω∗−1

yy Ω∗yx〉〉
]

= 〈〈An + ηβ sβ−1
L CA, δϑyy〉〉+ 〈〈Bn + ηβ sβ−1

L CB, δϑyx〉〉
where sL is given in (A.3), where, through the blockwise relations (1.3), we recognize the
random matrices An (with max norm ha) and Bn (with max norm hb) defined in (2.3) and
(2.4), and where, coming from the structural regularization term,

CA = −Ω∗−1
yy Ω∗yx LΩ∗ tyx Ω∗−1

yy and CB = 2 Ω∗−1
yy Ω∗yx L.

Whence it follows from the well-known relation |tr(M1M2)| 6 |M1|∞ |M2|1, where M1 and
M2 are compatible matrices, that

φ′(0) > − λ
cλ
|δϑyy|1 − ηβ sβ−1

L `a |δϑyy|1 −
µ

cµ
|δϑyx|1 − ηβ sβ−1

L `b |δϑyx|1

making use of the constants (A.3), λ > cλ ha and µ > cµ hb. For the sake of clarity, let

∆n(θ, θ ∗) = Rn(θ) + λ |Ωyy|−1 + µ |Ωyx|1 −Rn(θ ∗)− λ |Ω∗yy|−1 − µ |Ω∗yx|1.
For all θ ∈ Θ,

|Ωyy|−1 − |Ω∗yy|−1 = |[Ω∗yy + δθyy]S|−1 + |[δθyy]S̄|−1 − |[Ω∗yy]S|−1
>

∣∣|[Ω∗yy]S|−1 − |[δθyy]S|−1
∣∣+ |[δθyy]S̄|−1 − |[Ω∗yy]S|−1

> |[δθyy]S̄|1 − |[δθyy]S|1
from the triangle inequality and the fact that, as Ω∗yy is positive definite, the diagonal must
belong to S, i.e. (j, j) ∈ S for all 1 6 j 6 q so that any square matrix M of size q is
such that [M ]S̄ has diagonal elements all equal to zero. A similar bound obviously holds for
|Ωyx|1 − |Ω∗yx|1. Now, a straightforward calculation shows that

(5.8) ∆n(θ̂, θ ∗) > c
(
|[δϑyy]S̄|1 + |[δϑyx]S̄|1

)
− c

(
|[δϑyy]S|1 + |[δϑyx]S|1

)

where

c = max

{
(cλ + 1)λ

cλ
+ ηβ sβ−1

L `a,
(cµ + 1)µ

cµ
+ ηβ sβ−1

L `b

}

and

c = min

{
(cλ − 1)λ

cλ
− ηβ sβ−1

L `a,
(cµ − 1)µ

cµ
− ηβ sβ−1

L `b

}
.

Thus, provided that c > 0, which is stated in the configuration of the theorem, it only
remains to note that, necessarily,

∆n(θ̂, θ ∗) 6 0

since θ̂ is the global minimizer of θ 7→ Rn(θ) + λ |Ωyy|−1 + µ |Ωyx|1. The identification of α
given in (A.4) easily follows. �
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Lemma 5.10. Under (H1) and (H2), the second-order error term of (5.4) satisfies, for t = 1
and all θ ∈ Nr,α(θ ∗),

e1(θ, θ ∗) > γr,η,β,p ‖δθ‖2
F

where γr,η,β,p > 0 is given in (A.7).

Proof. From the definition of φ in (5.5) and the fact that φ′(0) = 〈〈∇Rn(θ ∗), θ − θ ∗〉〉, there
exists h ∈ ]0, 1[ satisfying

(5.9) e1(θ, θ ∗) =
1

2
φ′′(h).

To simplify the calculations, let

(5.10) uL = 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉.
We are going to study the behavior of Rn(Ωyy,Ωyx) in the directions Ωyy = Ω∗yy + t δθyy and
Ωyx = Ω∗yx+ t δθyx through φ(t), where we recall that δθyy = Ωyy−Ω∗yy and δθyx = Ωyx−Ω∗yx.
One can see that φ(t) moves from Rn(Ωyy,Ωyx) to Rn(Ω∗yy,Ω

∗
yx) as t decreases from 1 to 0.

The first derivative is

φ′(t) = −〈〈Ω−1
yy , δθyy〉〉+ 〈〈S (n)

yy , δθyy〉〉+ 2 〈〈S (n)
yx , δθyx〉〉

+ 2 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyx〉〉 − 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyy Ω−1
yy Ωyx〉〉

+ ηβ uβ−1
L

[
2 〈〈L,Ω t

yx Ω−1
yy δθyx〉〉 − 〈〈L,Ω t

yx Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]
.(5.11)

The second derivative is tedious to write but straightforward to establish,

φ′′(t) = 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉+ 2
[
〈〈S (n)

xx , δθ
t
yx Ω−1

yy δθyx〉〉 − 2 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyy Ω−1
yy δθyx〉〉

+ 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]

+ 2 ηβ uβ−1
L

[
〈〈L, δθ tyx Ω−1

yy δθyx〉〉 − 2 〈〈L,Ω t
yx Ω−1

yy δθyy Ω−1
yy δθyx〉〉

+ 〈〈L,Ω t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]

+ ηβ(β − 1)uβ−2
L

[
2 〈〈L,Ω t

yx Ω−1
yy δθyx〉〉 − 〈〈L,Ω t

yx Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]2
.(5.12)

First, from the combination of Lemmas 5.1 and 5.8, we clearly have uL > 0. We also note
that 0 6 ‖2

c
M1−cM2‖2

F = 4
c2
‖M1‖2

F−4 〈〈M1,M2〉〉+c2 ‖M2‖2
F for any c 6= 0 and any matrices

M1 and M2 of same dimensions. It follows, after some reorganizations, that for any c 6= 0
and d 6= 0,

φ′′(t) > 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉
+ c1 〈〈Ω−1

yy , δθyx S
(n)
xx δθ tyx〉〉+ c2 〈〈S (n)

xx ,Ω
t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
+ ηβ uβ−1

L

[
d1 〈〈Ω−1

yy , δθyx L δθ
t
yx〉〉+ d2 〈〈L,Ω t

yx Ω−1
yy δθyy Ω−1

yy δθyy Ω−1
yy Ωyx〉〉

]

where c1 = 2 − 4
c2

, c2 = 2 − c2, d1 = 2 − 4
d2

and d2 = 2 − d2. Here we exploited the
previous inequality twice, uL > 0 and β > 1. From Lemmas 5.1, 5.3, 5.7 and 5.8, using
sp(M1M2) = sp(M2M1) for square matrices M1 and M2, we obtain

〈〈L,Ω t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉 6 ωL 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉
where ωL is defined in (A.1). Replacing L by S

(n)
xx and ωL by ωS, a similar bound obviously

holds. Suppose that c and d are chosen so that c1 > 0, d1 > 0, c2 < 0 and d2 < 0. Then,

φ′′(t) > 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉
[
1− |c2|ωS − ηβ uβ−1

L |d2|ωL
]
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+ c1 〈〈Ω−1
yy , δθyx S

(n)
xx δθ tyx〉〉+ ηβ uβ−1

L d1 〈〈Ω−1
yy , δθyx L δθ

t
yx〉〉

> 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉
[
1− |c2|ωS − ηβ (p ωL)β−1|d2|ωL

]

+ c1 〈〈Ω−1
yy , δθyx S

(n)
xx δθ tyx〉〉+ ηβ (p ωL)β−1d1 〈〈Ω−1

yy , δθyx L δθ
t
yx〉〉.

Now choose εS > 0 and εL > 0 small enough so that εS ωS + ηβ pβ−1 ω β
L εL < 1 and fix

c =
√

2 + εS and d =
√

2 + εL. We finally obtain

(5.13) φ′′(t) > a1 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉+ a2 〈〈Ω−1
yy , δθyx S

(n)
xx δθ tyx〉〉+ a3 〈〈Ω−1

yy , δθyx L δθ
t
yx〉〉

where these positive constants are respectively given by

a1 = 1− εS ωS − ηβ pβ−1 ω β
L εL, a2 =

2 εS
2 + εS

and a3 = ηβ (p ωL)β−1 2 εL
2 + εL

.

The combination of Lemmas 5.1, 5.3 and 5.5 gives, uniformly in t ∈ [0, 1],

〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉 > λmin(Ω−1
yy ) tr(δθyy Ω−1

yy δθyy) >
‖δθyy‖2

F

4λ2
max(Ω∗yy)

where the inequality in the denominator comes from λmax(Ωyy) 6 2λmax(Ω∗yy) already estab-
lished in the proof of Lemma 5.8. Similarly,

〈〈Ω−1
yy , δθyx L δθ

t
yx〉〉 > λmin(Ω−1

yy ) tr(δθyx L δθ
t
yx) >

λmin(L) ‖δθyx‖2
F

2λmax(Ω∗yy)
.

Lemma 5.7 directly enables to bound the last term,

〈〈Ω−1
yy , δθyy S

(n)
xx δθyy〉〉 > λmin(Ω−1

yy ) tr(δθyx S
(n)
xx δθ tyx) >

λmin(Σ∗xx) ‖δθyx‖2
F

20λmax(Ω∗yy)
.

In conclusion, combining (5.9), (5.13) and the upper bounds above,

e1(θ, θ ∗) > a1 ‖δθyy‖2
F

8λ2
max(Ω∗yy)

+
a2 λmin(L) ‖δθyx‖2

F

4λmax(Ω∗yy)
+
a3 λmin(Σ∗xx) ‖δθyx‖2

F

40λmax(Ω∗yy)

> min

{
a1

8λ2
max(Ω∗yy)

,
a2 λmin(L)

4λmax(Ω∗yy)
+
a3 λmin(Σ∗xx)

40λmax(Ω∗yy)

}
‖δθ‖2

F

and we clearly identify γr,η,β,p > 0. �
Lemma 5.11. Assume that λ, µ and η are chosen according to the configuration of the
theorem. Suppose also that ha in (2.3) and hb in (2.4) satisfy

max{ha, hb} <
r∗ γr,η,β,p

cλ,µ
√
|S|

where r∗ is given in (A.6), γr,η,β,p in (A.7) and cλ,µ in (A.8). Then, under (H1) and (H2),
the estimation error satisfies ‖δϑ‖F 6 r∗.

Proof. By convexity of the objective and optimality of θ̂, each move from θ ∗ in the direction
t δϑ for t ∈ [0, 1] must lead to a decrease of the objective, i.e.

Rn(θ ∗ + t δϑ) + λ |Ω∗yy + t δϑyy|−1 + µ |Ω∗yx + t δϑyx|1 −Rn(θ ∗)− λ |Ω∗yy|−1 − µ |Ω∗yx|1 6 0.

Taking the notation of (5.8), this can be rewritten as ∆n(θ ∗ + t δϑ, θ ∗) 6 0. If ‖δϑ‖F 6 r∗

then choose t = 1, otherwise calibrate 0 < t < 1 such that ‖t δϑ‖F = r∗. Then, from Lemma
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5.9, it clearly follows that θ ∗ + t δϑ ∈ Nr,α(θ ∗). Hence, the reasoning preceding (5.8) still
holds and, together with Lemma 5.10, we obtain

0 > c
(
|[t δϑyy]S̄|1 + |[t δϑyx]S̄|1

)
− c

(
|[t δϑyy]S|1 + |[t δϑyx]S|1

)
+ γr,η,β,p ‖t δϑ‖2

F

> −c |[t δϑ]S|1 + γr,η,β,p ‖t δϑ‖2
F

> −cλ,µ max{ha, hb}
√
|S| ‖t δϑ‖F + γr,η,β,p ‖t δϑ‖2

F

where we used c > 0 and Cauchy-Schwarz inequality to get |[·]S|21 6 |S| ‖[·]S‖2
F . The constant

cλ,µ may be explicitely computed from the configuration of (λ, µ, η) and is given in (A.8).
Note that in the proof of Lemma 5.9, it was sufficient to see that Rn(θ) − Rn(θ ∗) > φ′(0)
whereas here, we must consider Rn(θ) − Rn(θ ∗) = φ′(0) + e1(θ, θ ∗) to meet our purposes.
That explains the presence of γr,η,β,p ‖t δϑ‖2

F in the inequality. We deduce that the error
must satisfy

‖t δϑ‖F 6
cλ,µ
√
|S|max{ha, hb}
γr,η,β,p

.

As a corollary, it holds that ‖δϑ‖F > r∗ ⇒ cλ,µ
√
|S|max{ha, hb} > r∗ γr,η,β,p or, conversely

written, cλ,µ
√
|S|max{ha, hb} < r∗ γr,η,β,p ⇒ ‖δϑ‖F 6 r∗. �

Lemma 5.12. Assume that λ, µ and η are chosen according to the configuration of the
theorem. Then, under (H1), there exists absolute constants b1 > 0 and b2 > 0 such that, for
any b3 ∈ ]0, 1[ and as soon as

n > max
{
b1 (q + dsαe ln(p+ q)), ln(10(p+ q)2)− ln(b3)

}
,

with probability no less that 1 − e−b2n − b3 both the random hypothesis (H2) is satisfied and
the upper bound

max{ha, hb} 6 16m∗
√

ln(10(p+ q)2)− ln(b3)

n

holds, where ha and hb are given in (2.3) and (2.4), sα is defined in (A.5) and m∗ in (A.9).
Hence, one can find a minimal number of observations n0 such that the theorem holds with
high probability as soon as n > n0.

Proof. All the ingredients of the proof are established in [29]. The authors start by recalling
that there exists absolute constants b1 > 0 and b2 > 0 such that hypothesis (H2) is satisfied
with probability no less than 1− e−b2n as soon as n > b1 (q + dsαe ln(p + q)). We also refer
the reader to Lem. 5.1 and Thm. 5.2 of [3], or to Lem. 7.4 of [10] for the random bounds
of the restricted isometry constants. Afterwards, they prove (see Prop. 4) that, as soon as
n > ln(10(p+ q)2)− ln(b3) for some b3 > 0, with probability 1− b3,

max{ha, hb} 6 16m∗
√

ln(10(p+ q)2)− ln(b3)

n
.

To find the minimal number of observations, we just need to make sure that the above bound
is itself smaller than the one of Lemma 5.11. It is then not hard to see that we may retain
the minimal size n0 given in (2.6). �

24

104



Appendix A. Some constants

This appendix is entirely dedicated to the constants appearing in the theoretical guaran-
tees. Indeed, a centralization seemed necessary to clarify the rest of the paper, especially
the understanding of the main theorem. First, we need to define some constants related to
L and to the true values of the model. The bounds

(A.1) ωL =
λmin(Ω∗yx LΩ∗ tyx)

4λmax(Ω∗yy)
, ωL =

4λmax(Ω∗yx LΩ∗ tyx)

λmin(Ω∗yy)
, ωS =

4λmax(Ω∗yx Σ∗xx Ω∗ tyx)

λmin(Ω∗yy)
.

are useful to control the eigenvalues of some recurrent expressions (Lemmas 5.7 and 5.8),
uniformly in a neighborhood of θ ∗ = (Ω∗yy,Ω

∗
yx). The true value of the term at the heart of

the structural regularization is

(A.2) sL = 〈〈L,Ω∗ tyx Ω∗−1
yy Ω∗yx〉〉.

It plays a role in the proof of Lemma 5.9 and, as a consequence, in the definition of the area
of validity Λ. This important lemma also requires to define

(A.3) `a = |Ω∗−1
yy Ω∗yx LΩ∗ tyx Ω∗−1

yy |∞ and `b = 2 |Ω∗−1
yy Ω∗yx L|∞

and, in the context of the theorem,

(A.4) α =
max

{
(cλ+1)λ

cλ
+ ηβ sβ−1

L `a,
(cµ+1)µ

cµ
+ ηβ sβ−1

L `b

}

min
{

(cλ−1)λ
cλ
− ηβ sβ−1

L `a,
(cµ−1)µ

cµ
− ηβ sβ−1

L `b

} .

From α and the cardinality of the true active set |S|, let

(A.5) sα = |S|
[
1 +

12α2 λmax(Σ∗xx)

λmin(Σ∗xx)

]

which serves as an upper bound in the random hypothesis (H2). Similarly, let

(A.6) r∗ = min{r∗1, r∗2, r∗3, r∗4}
where

r∗1 =
λmin(Ω∗yy)

2
, r∗2 =

√
10−
√

7√
5

√
λmax(Ω∗yx Σ∗xx Ω∗ tyx)

3
√

3
2
√

2

√
λmax(Σ∗xx)

, r∗3 =
λmin(Ω∗yx LΩ∗ tyx)

4 ‖LΩ∗ tyx‖2

and

r∗4 =
(
√

2− 1)
√
λmax(Ω∗yx LΩ∗ tyx)

√
λmax(L)

.

Together with α given above, r∗ is necessary to build the so-called neighborhood Nr,α(θ ∗)
defined in (5.7), which plays a fundamental role in all our reasonings. It is important to
note that, under the configuration of the theorem and hypothesis (H1), α > 0 and r∗ > 0.
Then, Lemma 5.10 highlights a new constant, characterizing a strong local convexity of the
smooth part of the objective in the neighborhood Nr,α(θ ∗),

(A.7) γr,η,β,p = min

{
a1

8λ2
max(Ω∗yy)

,
a2 λmin(L)

4λmax(Ω∗yy)
+
a3 λmin(Σ∗xx)

40λmax(Ω∗yy)

}
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where, as it is detailed in the proof of the lemma in question,

a1 = 1− εS ωS − ηβ pβ−1 ω β
L εL, a2 =

2 εS
2 + εS

and a3 = ηβ (p ωL)β−1 2 εL
2 + εL

for some well-chosen εS > 0 and εL > 0. Here again, we make sure that γr,η,β,p > 0. In the
same way, in the context of the theorem,

(A.8) cλ,µ = max

{
(cλ + 1) dλ

cλ
+ eλ,

(cµ + 1) dµ
cµ

+ eµ

}

is needed through Lemma 5.11. Finally, independently of the structure matrix L,

(A.9) m∗ = |diag(Σ∗xx)|∞ + |diag(Ω∗−1
yy Ω∗yx Σ∗xx Ω∗ tyx Ω∗−1

yy )|∞
is going to play a significative role in the upper bound of the theorem.
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2.2 Approche bayésienne

L’estimation de Ω dans un modèle graphique gaussien par inférence bayésienne est une
thématique déjà largement développée, elle fait l’objet par exemple de (Maathuis et al.,
2018, Chap. 10) où des a priori de type Wishart sont étudiés. En revanche, le PGGM
bayésien n’avait à notre connaissance jamais été envisagé et c’est pourquoi nous avons
souhaité proposer une contrepartie à l’approche fréquentiste. Nos modèles hiérarchiques
reposent sur les régressions linéaires de Xu et Ghosh (2015) pour q = 1, et sur celles
de Liquet et al. (2017) généralisées à q ⩾ 1, c’est en particulier la raison pour laquelle
nous imposons comme ces auteurs la sparsité par une stratégie spike-and-slab. Rappelons
que nous entendons par là une distribution de probabilité de la forme (1 − π) δ + π δ0,
en d’autres termes une variable aléatoire dont la loi s’exprime ainsi a une probabilité
π d’être nulle et une probabilité 1 − π d’être distribuée selon la loi δ. Un paramètre
dont la loi a posteriori conserverait cette forme pourrait donc être exactement nul, d’où
l’intérêt de la méthode pour engendrer de la sparsité dans une estimation bayésienne.
L’article Okome Obiang et al. (2022) présenté ci-dessous est accepté pour publication
chez Bayesian Analysis. Pour la suite et fin de cette section, nous renvoyons le lecteur aux
Définitions 1.1–1.4 de l’article en question afin d’avoir plus de détails sur les distributions
rencontrées (notations, densités, etc.), certaines étant usuelles mais d’autres un peu moins.

Résumé

Considérons donc un modèle linéaire à réponses multivariées de la forme

Y = −X∆TΩ−1
y + E (2.12)

où Y ∈ Rn×q contient les n réponses, X ∈ Rn×p contient les n prédicteurs, E ∈ Rn×q

est un bruit multivarié de loi MNn×q(0, In,Ω
−1
y ) et le produit −∆TΩ−1

y ∈ Rp×q est la
matrice des coefficients de la régression linéaire selon la décomposition évoquée dans la
section introductive. Notre procédure a pour principal objectif d’imposer de la sparsité
dans ∆, la matrice dont les coefficients sont proportionnels aux corrélations partielles
entre les prédicteurs et les réponses. L’effet du i-ème prédicteur sur les réponses se lit
dans la i-ème colonne de ∆, on va donc associer la notion de sparsité à celle de colonnes
nulles dans cette matrice : ∆i = 0 revient à dire qu’il n’existe pas de lien direct entre le
i-ème prédicteur et les réponses. À cet égard et dans un contexte de grande dimension,
on considère trois types de sparsité, selon la terminologie de (Giraud, 2014, Sec. 2.1) :

— Sparse (s) où seules certaines colonnes isolées de ∆ sont non-nulles.
— Group-sparse (gs) où seuls certains groupes de colonnes de ∆ sont non-nuls.
— Sparse-group-sparse (sgs) où seuls certains groupes de colonnes de ∆ sont non-nuls

en plus d’être sparse.
Le grand intérêt de cette dernière configuration est qu’elle donne lieu à une sélection à
double échelle (groupes et coordonnées). Appelons m le nombre de groupes, κg la taille
du groupe g et ∆g la sous-matrice de ∆ correspondant au groupe g (1 ⩽ g ⩽ m). En
vertu des relations (23) liant le couple (Ωy,∆) aux paramètres de la régression linéaire et
de l’inférence bayésienne issue de la littérature (en particulier les deux articles précités),
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on propose le modèle hiérarchique





Y |X,∆,Ωy ∼ MNn×q(−X∆T Ω−1
y , In, Ω−1

y )

∆g | νg, λg, π ⊥⊥∼ (1 − π1)
[
(1 − π2)Nq(0, λg νgi Ωy) + π2 δ0

]⊗κg
+ π1 δ0

νgi
⊥⊥∼ Γ(α, ℓgi)

λg
⊥⊥∼ Γ(αg, γg)

Ωy ∼ Wq(u, V )

πj
⊥⊥∼ β(aj, bj)

(2.13)

pour g ∈ J1,mK, i ∈ J1, κgK et j ∈ J1, 2K. Les hyperparamètres sont spécifiquement choisis
et discutés. Une sélection à double échelle s’opère sur ∆ à travers ∆g qui peut être soit
annulé entièrement, soit maintenu dans le modèle mais avec des coordonnées annulées.
Cette écriture (sgs) se veut très générale mais elle engendre nombre de cas d’intérêt. Ainsi
pour π1 = 0 et λg = 1, on obtient (s) alors que pour π2 = 0 et νgi = 1, on retrouve (gs).
De même, en fixant ℓgi = ℓg ou ℓgi = ℓ, voire même γg = γ, on considère des situations
de shrinkage local, par groupe ou global. Avec π1 = π2 = 0, on génère un modèle sans
sparsité qui pourrait correspondre à la version bayésienne non-pénalisée du PGGM. On
tire donc de nombreuses configurations particulières à partir de cette formulation. Sous
des hypothèses très spécifiques et suivant le raisonnement de Yang et Narisetty (2020)
valable en régression, on montre que dans les cas (s) et (gs), conditionnellement à la
variance des réponses,

P(T |Y,X,Ωy)
P−→ 1 (2.14)

lorsque n→ +∞, où T = {le support du vrai modèle est retrouvé}. Des échantillonneurs
de Gibbs sont développés afin d’estimer la densité jointe qui découle de ces modèles
hiérarchiques et obtenir des estimations a posteriori. On a retenu la moyenne a posteriori
pour Ωy alors que la médiane a posteriori était le choix indiqué pour ∆ en raison de
sa capacité à fournir des valeurs exactement nulles. Ces méthodes sont ensuite testées
en simulations pour comparaison avec les approches contemporaines d’estimation sparse
de matrices de précision, ainsi que sur un jeu de données réelles. On pourra trouver les
échantillonneurs, les programmes de démonstration ainsi que le jeu de données réelles sur
le GitHub https://github.com/FredericProia/BayesPGGM.

Perspectives

Les conclusions de cette étude sont très encourageantes, surtout en ce qui concerne
la capacité des algorithmes à retrouver le support de ∆. À ce stade les échantillonneurs
sont largement améliorables, citons par exemple deux pistes qui devraient absolument
être creusées. D’une part, certains termes sont ‘dangereux’ d’un point de vue numérique
car s’écrivant comme produit d’un terme potentiellement très grand et d’un terme po-
tentiellement très petit (typiquement, le terme |Iκg + λg XT

g Xg| que l’on retrouve en
dénominateur dans la loi a posteriori de ∆g peut exploser quand κg est grand et λg > 1
bien que théoriquement retenu par un terme dont la petitesse équivaut à sa croissance,
c’est pourquoi λg doit être attentivement contrôlé via un choix pertinent de ℓg), et la
compensation attendue en théorie peut ne pas se produire en pratique. Cela donne lieu
à des heuristiques de contrôle des valeurs initiales et des hyperparamètres largement
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critiquables. D’autre part, il n’existe pas à notre connaissance d’algorithme simple de
simulation de la loi MGIGq lorsque q > 1. Nous discutons dans l’article d’une approche
prometteuse reposant sur la propriété de Matsumoto-Yor (Massam et Weso lowski, 2006,
Thm. 3.1), hélas en l’état inapplicable à notre contexte particulier (il faudrait trouver un
z ∈ Rq tel que YTY+V −1 = bzzT pour un b > 0, alors que YTY+V −1 est de rang plein),
et cela nous conduit à considérer un échantillonnage par le mode de la loi considérée qui,
lui, est facilement accessible par résolution d’une équation de Riccati (cf. Rem. 6.1). En
introduisant dans nos simulations un ‘oracle’ dans lequel les paramètres associés (Ωy, λ, ν)
sont connus, on constate que l’erreur engendrée n’est pas si grande et que cette solution
de repli reste satisfaisante en pratique. Mais là encore, cela demanderait à être amélioré
lorsque de meilleurs outils de simulation seront à disposition. Par ailleurs, la garantie
théorique valable pour (s) et (gs) gagnerait à être étendue à (sgs). Cela ne semble pas
insurmontable, mais au prix d’une révision des techniques de preuve de Yang et Narisetty
(2020) bien plus conséquente que celle que nous proposons ici. Pour conclure et tenter de
faire le lien avec le premier axe de ce mémoire dans lequel nous avons beaucoup insisté sur
la problématique de la racine unitaire, on pourrait envisager (déjà pour le cas simplifié de
l’AR(1)) un modèle hiérarchique bayésien sur un autorégressif gaussien Y = (Y1, . . . , Yn)
dans lequel on munirait le paramètre d’un a priori de type spike-and-slab donnant une
probabilité π = π+ +π− (π+ pour +1, π− pour −1) à la racine unitaire et une probabilité
1 − π à la zone de stabilité, de la forme





Y | θ, σ2 ∼ Nn(0, Σ)1{|θ|< 1} + Nn(0, Σ+)1{θ=+1} + Nn(0, Σ−)1{θ=−1}
θ |π+, π− ∼ (1 − π+ − π−)L(−1, 1) + π+ δ+1 + π− δ−1

σ2 ∼ IΓ(u, v)
π+ ∼ β(a+, b+)
π− ∼ β(a−, b−)

où Σ, Σ+ et Σ− sont les matrices de covariance du vecteur gaussien Y calculables à partir
de θ et σ2, dépendant du fait que |θ| < 1, θ = +1 ou θ = −1, et où L(−1, 1) est une
distribution quelconque portée par ]− 1, 1[. Considérant les très bonnes performances en
recherche de support des algorithmes que l’on vient de présenter, cette piste pourrait
bien conduire à des tests de racines unitaires plus puissants que ceux issus des approches
fréquentistes usuelles, c’est pourquoi elle m’intéresse tout particulièrement et des travaux
sont en cours. Le passage à l’AR(p) ne sera pas triviale...
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A BAYESIAN APPROACH FOR PARTIAL GAUSSIAN GRAPHICAL
MODELS WITH SPARSITY

EUNICE OKOME OBIANG, PASCAL JÉZÉQUEL, AND FRÉDÉRIC PROÏA

Abstract. We explore various Bayesian approaches to estimate partial Gaussian graphical
models. Our hierarchical structures enable to deal with single-output as well as multiple-
output linear regressions, in small or high dimension, enforcing either no sparsity, sparsity,
group sparsity or even sparse-group sparsity for a bi-level selection through partial cor-
relations (direct links) between predictors and responses, thanks to spike-and-slab priors
corresponding to each setting. Adaptative and global shrinkages are also incorporated in
the Bayesian modeling of the direct links. An existing result for model selection consistency
is reformulated to stick to our sparse and group-sparse settings, providing a theoretical guar-
antee under some technical assumptions. Gibbs samplers are developed and a simulation
study shows the efficiency of our models which give very competitive results, especially in
terms of support recovery. To conclude, a real dataset is investigated.

AMS 2020 subject classifications: Primary 62A09, 62F15; Secondary 62J05.

1. Introduction and Motivations

This paper is devoted to the Bayesian estimation of the partial Gaussian graphical models.
Graphical models are now widespread in many contexts, like image analysis, economics or
biological regulation networks, neural models, etc. A graphical model for the d-dimensional
Gaussian vector Z ∼ Nd(µ,Σ) is a model where the conditional dependencies between the
coordinates of Z are represented by means of a graph. We refer the reader to the handbook
recently edited by Maathuis et al. [18] for a very complete survey of graphical models theory,
or to Chap. 7 of Giraud [12] for a wide introduction to the subject. It is well-known that
the partial correlation between Zi and Zj satisfies

Corr(Zi, Zj | Z̸= i, j) = − Ωij√
Ωii Ωjj

where Ω = Σ−1 ∈ S d
++ is the precision matrix of Z (the notation S d

++ for the cone of
symmetric positive definite matrices of dimension d is used in all the paper). A fundamental
consequence of this is that there is a partial correlation between Zi and Zj if and only
if the (i, j)-th element of Ω is non-zero. The sparse estimation of Ω is therefore a major
issue for variable selection in high-dimensional studies, which has given rise to a substantial
literature, see e.g. the seminal work of Meinshausen and Bühlmann [20]. This logically
led numerous authors to investigate interesting properties under various kind of hypotheses,
estimation procedures and penalties. Let us mention for example the optimality results
obtained by Cai and Zhou [5] and the penalized estimations of Yuan and Lin [32], Rothman
et al. [26], Banerjee et al. [2], Cai et al. [4] or Ravikumar et al. [24], all coming with

Key words and phrases. High-dimensional linear regression, Partial graphical model, Partial correlation,
Bayesian approach, Sparsity, Spike-and-slab, Gibbs sampler.

1

111



theoretical guarantees, algorithmic considerations and real world examples. Besides, the
famous graphical Lasso of Friedman et al. [10] has become an essential tool for dealing with
precision matrix estimation. Perhaps more attractive to us since focusing on each entry of the
precision matrix (no longer taken as a whole), the approach of Ren et al. [25] is remarkable
and will serve as a basis for comparison in our simulation study. The Bayesian inference
counterpart has been developed as well, it is e.g. the subject of Chap. 10 of Maathuis et al.
[18] where various Wishart-type priors are considered for Ω, see also Li et al. [15] or Gan et
al. [11] for spike-and-slab approaches and all references within.

Suppose now that we deal with a multivariate linear regression of the form

Y = XB + E

where Y ∈ Rn×q is a matrix of q-dimensional responses of which k-th row is Y t
k , X ∈ Rn×p is a

matrix of p-dimensional predictors of which k-th row is X t
k , B ∈ Rp×q contains the regression

coefficients and E ∈ Rn×q is a matrix-variate Gaussian noise. The Partial Gaussian Graphical
Model (PGGM), developped e.g. by Sohn and Kim [27] or Yuan and Zhang [33], appears as a
powerful tool to exhibit relations between predictors and responses that exist through partial
correlations (called from now on ‘direct links’, as opposed to ‘indirect links’ resulting from
correlations). Indeed, assume that the couple (Yk, Xk) ∈ Rq+p is jointly normally distributed
with zero mean, covariance Σ and precision Ω. Then, the block decomposition given by

Ω =

(
Ωy ∆
∆t Ωx

)

with Ωy ∈ S q
++, ∆ ∈ Rq×p and Ωx ∈ S p

++ leads to Yk |Xk ∼ Nq(−Ω−1
y ∆Xk, Ω−1

y ). This is
a crucial remark because one can see that the multiple-output regression Yk = B tXk + Ek

with Gaussian noise Ek ∼ Nq(0, R) may be reparametrized with

(1.1) B = −∆t Ω−1
y and R = Ω−1

y .

A large volume of literature exists for the sparse estimation of B with arbitrary group
structures (see e.g. Li et al. [14] or Chap. 6 of Giraud [12]), but we will not tackle this issue
in our study. At least not frontally but indirectly, since the latter relations show that an
estimation of B is possible through the one of the pair (Ωy,∆). Whereas B contains direct
and indirect links between the predictors and the responses (due e.g. to strong correlations
among the variables), ∆ is clearly more interesting from an inferential point of view for it
only contains direct links. However, while the estimation of (Ωy,∆) appears to be essential,
it usually depends on the accuracy of the estimation of the whole precision matrix, which,
in turn, may be strongly affected by the one of Ωx. For example, the graphical Lasso of
Friedman et al. [10] involves maximizing the log-likelihood penalized by the elementwise
ℓ1 norm of Ω. For multiple-output high-dimensional regressions where generally p ≫ q, we
understand that a significant bias is likely to result from the large-scale shrinkage. Another
substantial advantage of the partial model is that we can override this issue by computing a
new objective function in which Ωx has disappeared, i.e. the penalized log-likelihood

Ln(Ωy,∆) = − ln det(Ωy) + tr(Sy Ωy) + 2 tr(S t
yx ∆)

+ tr(Sx ∆t Ω−1
y ∆) + λ pen(Ωy) + µ pen(∆)(1.2)

where Sx ∈ S p
++ and Sy ∈ S q

++ are the empirical variances of the responses and the predictors,
respectively, and where Syx ∈ Rq×p is the empirical covariance, computed on the basis of
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a set of n observations. This can be obtained either by considering the multiple-output
Gaussian regression scheme, or, as it is done by Yuan and Zhang [33], by eliminating Ωx

thanks to a first optimization step in the objective function of the graphical model. The
usual convex penalties are elementwise ℓ1 norms, possibly deprived of the diagonal terms for
Ωy. This paved the way to the recent study of Chiquet et al. [6] where the authors replace
the penalty on Ωy by a structuring one enforcing various kind of sparsity patterns in ∆, and
to the one of Okome Obiang et al. [21] in which some theoretical guarantees are provided
for a slightly more general estimation procedure.

However, to the best of our knowledge, the Bayesian approach for the PGGM is a new
research topic. Given the outputs gathered in Y and the predictors gathered in X, the
objective of this paper is the Bayesian estimation of the direct links and the precision matrix
of the responses. This is inspired by the ideas of Xu and Ghosh [29] for the single-output
setting (q = 1), and by the ones of Liquet et al. [17] for the multiple-output setting (q > 1).
Taking advantage of the relations (1.1), we consider that a Gaussian prior for B must remain
Gaussian for ∆ (with a correctly updated variance), and that an inverse Wishart prior for
R merely becomes a Wishart one for Ωy. Yet, despite these seemingly small changes in the
design of the priors, we will see that the resulting distributions are completely different.
The hierarchical models that we are going to study all come from this working base, but let
us point out that a wide variety of refinements exists in the recent literature for Bayesian
sparsity, like the grouped ‘horseshoe’ of Xu et al. [30], the ‘aggressive’ multivariate Dirichlet-
Laplace prior of Wei et al. [28], the theoretical results for group selection consistency of
Yang and Narisetty [31] or even the extension of the Bayesian spike-and-slab group selection
to generalized additive models of Bai et al. [1], all related to the regression setting but
that might also be investigated for PGGMs. To enforce various types of sparsity in ∆ for
high-dimensional problems, we decided to make use of spike-and-slab priors, with a spike
probability guided by a conjugate Beta distribution.

The paper is organized as follows. Sections 2, 3 and 4 are dedicated to the study of
our hierarchical models enforcing either no sparsity, sparsity, group sparsity or sparse-group
sparsity in the direct links, respectively, according to the terminology of Sec. 2.1 of Giraud
[12]. In particular, we will see that our bi-level selection clearly diverges from the strategy
of Liquet et al. [17]. We also adapt the reasoning of Yang and Narisetty [31] to establish
group selection consistency under some technical assumptions and an appropriate amount
of sparsity. Section 5 is devoted to the conditional posterior distributions of the parameters
in order to implement Gibbs samplers that are tested in Section 6. This empirical section
is focused on a simulation study first, to evaluate and compare the efficiency of the models,
then a real dataset is treated, and a short conclusion ends the paper. But, firstly, let us give
some examples of what exactly we mean by ‘sparse’, ‘group-sparse’ and ‘sparse-group-sparse’
settings, and let us summarize the definitions that we have chosen to retain for the well-
known distributions as well as for the less usual ones, in order to avoid any misinterpretation
of our results and proofs.

Example 1.1. To explain a set of phenotypic traits, suppose that we investigate a large col-
lection of genetic markers spread over twenty chromosomes. For coordinate sparsity (‘sparse’
setting), only a few markers are active. For group sparsity (‘group-sparse’ setting), the mark-
ers are clustered into groups (formed by chromosomes) and only a few of them are active.
For sparse-group sparsity (‘sparse-group-sparse’ setting), only a few chromosomes are active
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and they are sparse, the result is a bi-level selection (chromosomes and markers). This will
be the context of our example on real data (Section 6.2).

Definition 1.1 (Gaussian). The density of X ∈ Rd1×d2 following the matrix normal distri-
bution MNd1×d2(M, Σ1, Σ2) is given by

p(X) =
1

(2π)
d1 d2

2 |Σ1|
d2
2 |Σ2|

d1
2

exp

(
−1

2
tr
(
Σ−1

2 (X −M)t Σ−1
1 (X −M)

))

where M ∈ Rd1×d2, Σ1 ∈ S d1
++ and Σ2 ∈ S d2

++. When d2 = 1, this is a multivariate normal
distribution Nd(µ, Σ) with d = d1, µ = M and Σ = Σ−1

2 Σ1, having density

p(X) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(X − µ)t Σ−1(X − µ)

)

where µ ∈ Rd and Σ ∈ S d
++.

Definition 1.2 (Generalized Inverse Gaussian). The density of X ∈ S d
++ following the

matrix generalized inverse Gaussian distribution MGIGd(ν, A, B) is given by

p(X) =
|X|ν− d+1

2∣∣A
2

∣∣ν Bν

(
A
2
, B
2

) exp

(
−1

2
tr
(
AX−1 +BX

))
1{X ∈ S d

++}

where ν ∈ R, A ∈ S d
++, B ∈ S d

++ and Bν is a Bessel-type function of order ν. When d = 1,
this is a generalized inverse Gaussian distribution GIG(ν, a, b) with a = A and b = B,
having density

p(X) =
Xν−1

(
a
2

)ν
Bν

(
a
2
, b
2

) e−
a

2X
− bX

2 1{X > 0}

where ν ∈ R, a > 0 and b > 0.

Definition 1.3 (Wishart/Gamma/Exponential). The density of X ∈ S d
++ following the

matrix Wishart distribution Wd(u, V ) is given by

p(X) =
|X|u−d−1

2

2
d u
2 Γd

(
u
2

)
|V |u2

exp

(
−1

2
tr
(
V −1X

))
1{X ∈ S d

++}

where u > d − 1, V ∈ S d
++ and Γd is the multivariate Gamma function of order d. When

d = 1, this is a Gamma distribution Γ(a, b) with a = u
2
and 1

b
= 2V , having density

p(X) =
b aXa−1

Γ(a)
e−bX

1{X > 0}

where a > 0 and b > 0. The exponential distribution E(ℓ) is then defined as the Γ(1, ℓ)
distribution, for ℓ > 0.

Definition 1.4 (Beta). The density of X ∈ [0, 1] following the Beta distribution β(a, b) is
given by

p(X) =
Xa−1 (1 −X) b−1

β(a, b)
1{0⩽X ⩽ 1}

where a > 0, b > 0 and β is the Beta function.

In all the paper, data and parameters are gathered in Θ = {Y,X,∆,Ωy, ν, λ, π} and, to
standardize, for any e ∈ Θ, we note Θe = Θ\{e}.
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2. The sparse setting

In this section, λi ∈ R is the i-th component of λ ∈ Rp, ∆i ∈ Rq is the i-th column of ∆
and Xi ∈ Rn stands for the i-th column of X (1 ⩽ i ⩽ p). Let us consider the hierarchical
Bayesian model, where the columns of ∆ are assumed to be independent, given by

(2.1)





Y |X,∆,Ωy ∼ MNn×q(−X∆t Ω−1
y , In, Ω−1

y )

∆i |Ωy, λi, π
⊥⊥∼ (1 − π)Nq(0, λi Ωy) + π δ0

λi
⊥⊥∼ Γ(α, ℓi)

Ωy ∼ Wq(u, V )
π ∼ β(a, b)

for i ∈ J1, pK, with hyperparameters α = 1
2
(q + 1), ℓi > 0, u > q − 1, V ∈ S q

++, a > 0
and b > 0. A general ungrouped sparsity is promoted in the columns of ∆ through the
spike-and-slab prior. In this mixture model, π is the prior spike probability and λ is an
adaptative shrinkage factor acting at the predictor scale (λi is associated with the direct
links between predictor i and all the responses). When ℓi = ℓ for all i, we will rather speak
of global shrinkage. The degree of sparsity will be characterized by the number N0 of zero
columns of ∆, that is

(2.2) N0 = Card(i, ∆i = 0) =

p∑

i=1

1{∆i =0}.

To implement a Gibbs sampler from the full posterior distribution stemming from (2.1), we
may use the conditional distributions given in the proposition below.

Proposition 2.1. In the hierarchical model (2.1), the conditional posterior distributions are
as follows.

− The parameter ∆ satisfies, for i ∈ J1, pK,
∆i |Θ∆i

∼ (1 − pi)Nq(−siHi, si Ωy) + pi δ0

where

Hi = Ωy Y t Xi +
∑

j ̸= i

⟨Xi, Xj⟩∆j, si =
λi

1 + λi ∥Xi∥ 2

and
pi =

π

π + (1 − π) (1 + λi ∥Xi∥ 2)−
q
2 exp

(
si H t

i Ω−1
y Hi

2

) .

− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, ∆ (Xt X +D−1

λ ) ∆t, Y tY + V −1

)

where Dλ = diag(λ1, . . . , λp).
− The parameter λ satisfies, for i ∈ J1, pK,

λi |Θλi
∼ 1{∆i ̸=0} GIG

(
1

2
, ∆t

i Ω−1
y ∆i, 2 ℓi

)
+ 1{∆i =0} Γ(α, ℓi).

− The parameter π satisfies

π |Θπ ∼ β
(
N0 + a, p−N0 + b

)
.
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Proof. See Section 5.1. □

Remark 2.1. The Bayesian Lasso, as introduced e.g. in Sec. 6.1 of [13] or in [22], assumes
a prior Laplace distribution for the regression coefficients conditional on the noise variance.
In our case, ∆i |Ωy, π is still a multivariate spike-and-slab (after integrating over λi), with a
slab following a so-called multivariate K-distribution (see [7]), which is a generalization of
the multivariate Laplace distribution. See e.g. Sec 2.1 of [17]. From this point of view, our
study is in line with the usual Bayesian regression schemes. Perhaps even more interesting,
going on with the idea of the authors, suppose that, for all 1 ⩽ i ⩽ p, ∆i = bi ∆∗

i where ∆∗
i

follows the multivariate K-distribution described above and bi | π ∼ B(1− π) is independent
of ∆∗

i . Now, the sparsity in ∆ is not induced by a spike-and-slab strategy anymore but,
equivalently, by multiplying the slab part by an independent Bernoulli variable being 0 with
probability π. Then, it is possible to show that the negative log-likelihood of this alternative
hierarchical model is given, up to an additive constant that does not depend on ∆, by

1

2

∥∥∥(Y + X∆t Ω−1
y ) Ω

1
2
y

∥∥∥
2

F
+

p∑

i=1

ci

∥∥∥Ω
− 1

2
y ∆∗

i

∥∥∥
F

+ ln

(
1 − π

π

) p∑

i=1

bi

where ci > 0. We first recognize an ℓ2-type penalty but also an ℓ0-type penalty on ∆
(provided that π < 1

2
) since summing the bi amounts to counting the number of non-zero

columns in ∆. Consequently, there is a close connection between our hierarchical Bayesian
model and the regressions penalized by ℓ2 and ℓ0 norms, problems that are known to be very
hard to solve due to combinatorial optimization.

The particular case q = 1 is a very useful corollary of the proposition. Here, the direct
links form a row vector such that ∆t ∈ Rp with components ∆i ∈ R (1 ⩽ i ⩽ p), and the
precision matrix of the responses reduces to ωy > 0. According to the parametrization of
the distributions (see Section 1), the corresponding prior distribution of ωy is Γ(u

2
, 1
2 v

) for
u, v > 0 and the one of λi is E(ℓi) for ℓi > 0. The other priors are unchanged.

Corollary 2.1. In the hierarchical model (2.1) with q = 1, the conditional posterior distri-
butions are as follows.

− The parameter ∆ satisfies, for i ∈ J1, pK,
∆i |Θ∆i

∼ (1 − pi)N (−si hi, si ωy) + pi δ0

where

hi = ωy ⟨Xi, Y⟩ +
∑

j ̸= i

⟨Xi, Xj⟩∆j, si =
λi

1 + λi ∥Xi∥ 2

and

pi =
π

π + (1 − π) (1 + λi ∥Xi∥ 2)−
1
2 exp

(
si h2

i

2ωy

) .

− The parameter ωy satisfies

ωy |Θωy ∼ GIG
(
n− p+N0 + u

2
, ∆ (Xt X +D−1

λ ) ∆t, ∥Y∥ 2 +
1

v

)

where Dλ = diag(λ1, . . . , λp).
6
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− The parameter λ satisfies, for i ∈ J1, pK,

λi |Θλi
∼ 1{∆i ̸=0} GIG

(
1

2
,

∆ 2
i

ωy

, 2 ℓi

)
+ 1{∆i =0} E(ℓi).

− The parameter π satisfies

π |Θπ ∼ β
(
N0 + a, p−N0 + b

)
.

Proof. This is a consequence of Proposition 2.1. □
Note that we can also easily derive the Bayesian counterpart of the standard PGGM

adapted to the small-dimensional case, with no sparsity, by taking π = 0.

Corollary 2.2. In the hierarchical model (2.1) with π = 0, the conditional posterior distri-
butions are as follows.

− The parameter ∆ satisfies, for i ∈ J1, pK,
∆i |Θ∆i

∼ Nq(−siHi, si Ωy)

where

Hi = Ωy Y t Xi +
∑

j ̸= i

⟨Xi, Xj⟩∆j and si =
λi

1 + λi ∥Xi∥ 2
.

− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+ u

2
, ∆ (Xt X +D−1

λ ) ∆t, Y tY + V −1

)

where Dλ = diag(λ1, . . . , λp).
− The parameter λ satisfies, for i ∈ J1, pK,

λi |Θλi
∼ GIG

(
1

2
, ∆t

i Ω−1
y ∆i, 2 ℓi

)
.

Proof. This is a consequence of Proposition 2.1. □
In the simulation study of Section 6.1, Scen. 0, 1 and 2 are dedicated to the sparse setting.

The next section discusses the group sparsity in ∆.

3. The group-sparse setting

The predictors are now ordered in m groups of sizes κ1 + . . . + κm = p. For the g-th
group (1 ⩽ g ⩽ m), λg ∈ R is the g-th component of λ ∈ Rm, the covariate submatrix is
Xg ∈ Rn×κg and the corresponding slice of ∆ is ∆g ∈ Rq×κg . Let us consider the hierarchical
Bayesian model, where the columns of ∆ are assumed to be independent both within and
between the groups, given by

(3.1)





Y |X,∆,Ωy ∼ MNn×q(−X∆t Ω−1
y , In, Ω−1

y )

∆g |Ωy, λg, π
⊥⊥∼ (1 − π)MNq×κg(0, λg Ωy, Iκg) + π δ0

λg
⊥⊥∼ Γ(αg, ℓg)

Ωy ∼ Wq(u, V )
π ∼ β(a, b)

7
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for g ∈ J1,mK, with hyperparameters αg = 1
2
(q κg +1), ℓg > 0, u > q−1, V ∈ S q

++, a > 0 and
b > 0. A general group sparsity is promoted in the columns of ∆ through the spike-and-slab
prior at the group level. In this mixture model, π is the prior spike probability and λ is an
adaptative shrinkage factor acting at the group scale (λg is associated with the direct links
between the predictors of group g and all the responses). Likewise, when ℓg = ℓ for all g, we
will rather speak of global shrinkage. Now, the degree of sparsity will be characterized by
N0 given in (2.2), but also by the number G0 of zero groups of ∆, that is

(3.2) G0 = Card(g, ∆g = 0) =
m∑

g=1

1{∆g =0}.

To implement a Gibbs sampler from the full posterior distribution stemming from (3.1), we
may use the conditional distributions given in the proposition below.

Proposition 3.1. In the hierarchical model (3.1), the conditional posterior distributions are
as follows.

− The parameter ∆ satisfies, for g ∈ J1,mK,
∆g |Θ∆g ∼ (1 − pg)MNq×κg(−Hg Sg, Ωy, Sg) + pg δ0

where
Hg = ΩyY t Xg +

∑

j ̸= g

∆j X t
j Xg, Sg = λg

(
Iκg + λg X t

g Xg

)−1

and
pg =

π

π + (1 − π) |Iκg + λg X t
g Xg|−

q
2 exp

(
tr(H t

g Ω−1
y Hg Sg)

2

) .

− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, ∆ (Xt X +D−1

λ ) ∆t, Y tY + V −1

)

where Dλ = diag(λ1, . . . , λ1, . . . , λm, . . . , λm) with each λg duplicated κg times.
− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG
(

1

2
, tr(∆t

g Ω−1
y ∆g), 2 ℓg

)
+ 1{∆g =0} Γ(αg, ℓg).

− The parameter π satisfies

π |Θπ ∼ β
(
G0 + a, m−G0 + b

)
.

Proof. See Section 5.2. □
Note that Remark 2.1 still applies to this configuration, after some adjustments (the ℓ0-like

penalty is on the number of non-zero groups). Here again, the particular case q = 1 is a very
useful corollary. The direct links form a row vector such that ∆t ∈ Rp with groups ∆t

g ∈ Rκg

(1 ⩽ g ⩽ m), the precision matrix of the responses reduces to ωy > 0. According to the
parametrization of the distributions (see Section 1), the corresponding prior distribution of
ωy is Γ(u

2
, 1
2 v

) for u, v > 0, like in the ungrouped setting. The other priors are unchanged.

Corollary 3.1. In the hierarchical model (3.1) with q = 1, the conditional posterior distri-
butions are as follows.

8
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− The parameter ∆ satisfies, for g ∈ J1,mK,
∆t

g |Θ∆g ∼ (1 − pg)Nκg(−SgHg, ωy Sg) + pg δ0

where

Hg = ωy X t
g Y +

∑

j ̸= g

X t
g Xj ∆t

j, Sg = λg
(
Iκg + λg X t

g Xg

)−1

and

pg =
π

π + (1 − π) |Iκg + λg X t
g Xg|−

1
2 exp

(
H t

g Sg Hg

2ωy

) .

− The parameter ωy satisfies

ωy |Θωy ∼ GIG
(
n− p+N0 + u

2
, ∆ (Xt X +D−1

λ ) ∆t, ∥Y∥ 2 +
1

v

)

where Dλ = diag(λ1, . . . , λ1, . . . , λm, . . . , λm) with each λg duplicated κg times.
− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG
(

1

2
,
∥∆g∥ 2

ωy

, 2 ℓg

)
+ 1{∆g =0} Γ(αg, ℓg).

− The parameter π satisfies

π |Θπ ∼ β
(
G0 + a, m−G0 + b

)
.

Proof. This is a consequence of Proposition 3.1. □
In the simulation study of Section 6.1, Scen. 3 and 4 are dedicated to the group-sparse

setting. To conclude this section, a theoretical guarantee is provided (given Ωy and with
λ = λn and π = πn depending on n). It is possible to obtain a model selection consistency
property for this approach when both the number of observations n and the number of
groups m = mn tend to infinity, by adapting the reasoning of [31] dedicated to the linear
regression (with q = 1). Indeed, when Ωy is known, ∆ reduces to a linear transformation of
B. Thus, it is not surprising that a similar result follows under the same kind of hypotheses.
In the sequel, we denote by X(k) ∈ Rn×|k| the design matrix of rank rk corresponding to the
submodel indexed by the binary vector k ∈ {0, 1}m having |k| non-zero values (kg = 1 means
that the g-th group is included in the model), and by Π(k) ∈ Rn×n the projection matrix

onto the column-space of X(k). Similarly, ∆ restricted to k is ∆(k) ∈ Rq×|k|. The true model
is called t and t±g are submodels of t that contain only the g-th group or that are deprived
of it, respectively. Let

δ1 = inf
1⩽ g⩽ |t|

∥∥(In − Π(t−g))X(t+g) ∆t
(t+g) Ω

− 1
2

y

∥∥2
F

and, for some K > 0,

δK2 = inf
k∈EK

∥∥(In − Π(k))X(t) ∆t
(t) Ω

− 1
2

y

∥∥2
F

with EK = {k such that t ̸⊂ k and rk ⩽ Krt}. Let also,

µK
n,min = inf

k∈FK

µ+

(Xt
(k) X(k)

n

)
and µ̄n = inf

k∈F
µ∗
(Xt

(k) (In − Π(k∩ t))X(k)

n

)
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with FK = {k such that t ⊂ k and rk ⩽ (K + 1) rt} and F = {k such that |k\t| > 0}, and
where, for a square matrix A, µ+(A) is the minimum non-zero eigenvalue of A and µ∗(A) is
the geometric mean of the non-zero eigenvalues of A. The hypotheses are those of [31] that
we have to slightly adapt. By fn ≍ gn we mean that there is a constant c ̸= 0 such that
fn/gn → c as n tends to infinity.

(H.1) There exists a rate such that mn = evn with vn → +∞ and vn = o(n).
(H.2) The prior slab probability satisfies 1 − πn ≍ 1/mn.
(H.3) The shrinkage factors satisfy nλ♯n ≍ m2+η

n µ̄−η
n and µK

n,min nλ
♯
n → +∞ for some η > 0,

where λ♯n = maxi λn, i.
(H.4) There exists ϵ1 > 0 such that δ1 > (1 + ϵ1) rt [(4 + η) lnmn − η ln µ̄n].
(H.5) There exists ϵ2 > 0 such that δK2 > (1 + ϵ2) rt [(4 + η) lnmn − η ln µ̄n] for some

K > max(8/η + 1, η/(η − 1)).

We refer the reader to p. 917 of [31] where the authors give very clarifying comments on the
interpretation to be given to these technical assumptions. In particular, while (H.1), (H.2)
and (H.3) control the behavior of mn, πn and λn as n tends to infinity, (H.4) and (H.5) are
related to sensitivity and specificity and are therefore in connection with the true model t.

Proposition 3.2. Suppose that (H.1)–(H.5) are satisfied. Then, as n tends to infinity,

P(T |Y,X,Ωy)
P−→ 1

where T = {t is selected} and t is the true model.

Proof. The result is obtained by following the same lines as the proof of Thm 2.1 of [31].
One just has to clarify a few points to solve the issues arising from q ⩾ 1 and from the
adaptative shrinkage, which is done in Section 5.4. □

Remark 3.1. Obviously, Proposition 3.2 also holds for the sparse setting (with m = p) and
in that case, it is instructive to draw the parallel with Thm. 1 of [25] even if the estimation
procedure is very different. The authors show that, to obtain a

√
n-consistent estimation of

the precision matrix Ω in a GGM, Ω must contain at most ≍ √
n/ ln p non-zero columns. In

the Gibbs sampler (see Proposition 2.1), the slab probability 1 − π is generated according
to a distribution that satisfies

E[1 − π |Θπ] =
p−N0 + b

p+ a+ b
and V(1 − π |Θπ) =

(N0 + a)(p−N0 + b)

(p+ a+ b)2 (p+ a+ b+ 1)
.

Thus, if the model selects ≍ √
n/ ln p predictors, it follows that the posterior expectation

of 1 − π is ≍ √
n/(p ln p) = 1/p when p = e

√
n. In that case, the posterior variance of

1 − π is ≍ 1/p2. To sum up, in a model with ≍ √
n/ ln p predictors selected, the posterior

distribution of 1 − π is very concentrated around 1/p which conforms to (H.1) and (H.2).
This is not directly comparable due to the different procedures, but it seems interesting to
observe that the same orders of magnitude are involved to reach theoretical guarantees for
the estimation of ∆.

In the next section, an approach is suggested to deal with sparse-group sparsity in ∆, for
a bi-level selection.
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4. The sparse-group-sparse setting

To produce a sparse model both at the variable level (for variable selection) and at the
group level (for group selection), it seems natural to carry on with our strategy by introducing
another spike-and-slab effect into the first one. The predictors are still ordered in m groups
of sizes κ1 + . . . + κm = p. For the g-th group (1 ⩽ g ⩽ m), λg ∈ R is the g-th component
of λ ∈ Rm and, for the i-th predictor of this group (1 ⩽ i ⩽ κg), νgi ∈ R is the i-th
component of νg ∈ Rκg . The i-th column of the covariate submatrix Xg is Xgi ∈ Rn and the
corresponding slice of ∆g is ∆gi ∈ Rq while ∆g\i ∈ Rq×(κg−1) is ∆g deprived of ∆gi. Here our
approach diverges from [29] and [17]. The bi-level selection of the authors is made through
spike-and-slab effects both at the group scale and on the individual variances, considered as
truncated Gaussians, generating zero groups and (almost surely) zero coefficients within the
groups. Let us suggest instead the Bayesian hierarchical model given by

(4.1)





Y |X,∆,Ωy ∼ MNn×q(−X∆t Ω−1
y , In, Ω−1

y )

∆g | νg, λg, π ⊥⊥∼ (1 − π1)
[
(1 − π2)Nq(0, λg νgi Ωy) + π2 δ0

]⊗κg
+ π1 δ0

νgi
⊥⊥∼ Γ(α, ℓgi)

λg
⊥⊥∼ Γ(αg, γg)

Ωy ∼ Wq(u, V )

πj
⊥⊥∼ β(aj, bj)

for g ∈ J1,mK, i ∈ J1, κgK and j ∈ J1, 2K, with hyperparameters α = 1
2
(q+1), αg = 1

2
(q κg+1),

ℓgi > 0, γg > 0, u > q−1, V ∈ S q
++, aj > 0, and bj > 0. In this mixture model, π1 is the prior

spike probability on the groups whereas π2 is the prior spike probability within the non-zero
groups, for a bi-level selection. In terms of cumulative shrinkage effects, λ is an adaptative
shrinkage factor acting at the group scale and ν is an adaptative shrinkage factor acting at
the predictor scale (λg is associated with the direct links between the predictors of group g
and all the responses whereas νgi is associated with the direct links between predictor i of
group g and all the responses). In this way, (4.1) opens up many perspectives for dealing
with bi-level shrinkage. We can set γg = γ for all g, for a global shrinkage at the group scale.
At the predictor scale, when ℓgi = ℓg for all i, this is a global shrinkage in the g-th group but
we might even consider a full global shrinkage ℓgi = ℓ. However, an identifiability issue may
result from the product λg νgi between group and within-group effects. Even if the posterior
distributions depend on different levels of data that shall resolve it, one can for example fix
λg = 1 (for adaptative) or νgi = 1 (for global) and let the shrinkage entirely rely on the other
parameter. Although it achieves the same objectives as those of [29] and [17], this hierarchy
seems more consistent with our previous sections (take π2 = 0 and νgi = 1 to remove the
within-group effect and recover the group-sparse setting of Section 3, take π1 = 0 and λg = 1
to remove the group effect and recover the sparse setting of Section 2). In this context, the
degree of sparsity is still characterized by N0 given in (2.2) for the predictor scale, by G0

given in (3.2) for the group scale, but also, for the within-group scale, by the number N0g of
zero columns in each particular group g, that is, for all 1 ⩽ g ⩽ m,

(4.2) N0g = Card(i, ∆gi = 0) =

κg∑

i=1

1{∆gi =0}.
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We also need to define the number J0 of zero columns in the non-zero groups, that is

(4.3) J0 = Card(i, ∆gi = 0 and ∆g ̸= 0) =
m∑

g=1

N0g 1{∆g ̸=0}.

To implement a Gibbs sampler from the full posterior distribution stemming from (4.1), we
may use the conditional distributions given in the proposition below.

Proposition 4.1. In the hierarchical model (4.1), the conditional posterior distributions are
as follows.

− The parameter ∆gi satisfies, for g ∈ J1,mK and i ∈ J1, κgK,
∆gi |Θ∆gi

∼ (1 − pgi)Nq(−sgiHgi, sgi Ωy) + pgi δ0

where

Hgi = Ωy Y t Xgi +
∑

h,j ̸= g,i

⟨Xgi, Xhj⟩∆hj, sgi =
νgi λg

1 + νgi λg ∥Xgi∥ 2

and

pgi =
ρgi

ρgi + (1 − π1) (1 − π2) (1 + νgi λg ∥Xgi∥ 2)−
q
2 exp

(
sgi H t

gi Ω
−1
y Hgi

2

)

in which ρgi = (1 − π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}.
− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, ∆ (Xt X +D−1

λν ) ∆t, Y tY + V −1

)

where Dλν = diag(ν11 λ1, . . . , ν1κ1 λ1, . . . , νm1 λm, . . . , νmκm λm).
− The parameter ν satisfies, for g ∈ J1,mK and i ∈ J1, κgK,

νgi |Θνgi ∼ 1{∆gi ̸=0} GIG
(

1

2
,

∆t
gi Ω−1

y ∆gi

λg
, 2 ℓgi

)
+ 1{∆gi =0} Γ(α, ℓgi).

− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG
(
qN0g + 1

2
, tr(D−1

νg ∆t
g Ω−1

y ∆g), 2 γg

)
+ 1{∆g =0} Γ(αg, γg)

where Dνg = diag(νg1, . . . , νgκg).
− The parameter π satisfies, for j ∈ J1, 2K,

πj |Θπj
∼ β

(
Aj + aj, Bj + bj

)
.

where A1 = G0, B1 = m−G0, A2 = J0 and B2 = p−N0.

Proof. See Section 5.3. □
It only remains to give the explicit results for the particular case q = 1. The direct

links form a row vector such that ∆t ∈ Rp with groups ∆t
g ∈ Rκg (1 ⩽ g ⩽ m) containing

predictors ∆gi ∈ R (1 ⩽ i ⩽ κg), and the precision matrix of the responses reduces to ωy > 0.
According to the parametrization of the distributions (see Section 1), the corresponding prior
distribution of ωy is Γ(u

2
, 1
2 v

) for u, v > 0, like in the other settings, and the one of νgi is
E(ℓgi) for ℓgi > 0. The other priors are unchanged.
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Corollary 4.1. In the hierarchical model (4.1) with q = 1, the conditional posterior distri-
butions are as follows.

− The parameter ∆gi satisfies, for g ∈ J1,mK and i ∈ J1, κgK,
∆gi |Θ∆gi

∼ (1 − pgi)N (−sgi hgi, sgi ωy) + pgi δ0

where

hgi = ωy ⟨Xgi, Y⟩ +
∑

h,j ̸= g,i

⟨Xgi, Xhj⟩∆hj, sgi =
νgi λg

1 + νgi λg ∥Xgi∥ 2

and
pgi =

ρgi

ρgi + (1 − π1) (1 − π2) (1 + νgi λg ∥Xgi∥ 2)−
1
2 exp

(
sgi h2

gi

2ωy

)

in which ρgi = (1 − π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}.
− The parameter ωy satisfies

ωy |Θωy ∼ GIG
(
n− p+N0 + u

2
, ∆ (Xt X +D−1

λν ) ∆t, Y t Y +
1

v

)

where Dλν = diag(ν11 λ1, . . . , ν1κ1 λ1, . . . , νm1 λm, . . . , νmκm λm).
− The parameter ν satisfies, for g ∈ J1,mK and i ∈ J1, κgK,

νgi |Θνgi ∼ 1{∆gi ̸=0} GIG
(

1

2
,

∆2
gi

λg ωy

, 2 ℓgi

)
+ 1{∆gi =0} E(ℓgi).

− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG
(
N0g + 1

2
,

∆gD
−1
νg ∆t

g

ωy

, 2 γg

)
+ 1{∆g =0} Γ(αg, γg)

where Dνg = diag(νg1, . . . , νgκg).
− The parameter π satisfies, for j ∈ J1, 2K,

πj |Θπj
∼ β

(
Aj + aj, Bj + bj

)
.

where A1 = G0, B1 = m−G0, A2 = J0 and B2 = p−N0.

Proof. This is a consequence of Proposition 4.1. □
In the simulation study of Section 6.1, Scen. 5 and 6 are dedicated to the sparse-group-

sparse setting. Now, let us prove our assertions by a few computational steps.

5. Conditional posterior distributions

5.1. The sparse setting: proof of Proposition 2.1. First of all, the full posterior dis-
tribution of the parameters conditional on X and Y satisfies

p(∆,Ωy, λ, π |Y,X) ∝ p(Y |X,∆,Ωy) p(∆ |Ωy, λ, π) p(λ) p(Ωy) p(π)

∝ |Ωy|
n
2 exp

(
−1

2

∥∥∥(Y + X∆t Ω−1
y ) Ω

1
2
y

∥∥∥
2

F

)

×
p∏

i=1

[
1 − π√
λ q
i |Ωy|

exp

(
−∆t

i Ω−1
y ∆i

2λi

)
1{∆i ̸=0}
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+ π 1{∆i =0}

]
λ

1
2
(q+1)−1

i e−ℓi λi

× |Ωy|
u−q−1

2 exp

(
−tr(V −1 Ωy)

2

)
π a−1 (1 − π) b−1.(5.1)

On the one hand, exploiting the cyclic property of the trace, a tedious calculation shows
that, for all 1 ⩽ i ⩽ p,
∥∥∥(Y + X∆t Ω−1

y ) Ω
1
2
y

∥∥∥
2

F
= tr(Y t YΩy) + 2 tr(Xt Y∆) + tr(Xt X∆t Ω−1

y ∆)

= ∥Xi∥ 2 ∆t
i Ω−1

y ∆i + 2
∑

j ̸= i

⟨Xi, Xj⟩∆t
j Ω−1

y ∆i + 2X t
i Y∆i + T̸= i(5.2)

where the term T̸= i does not depend on ∆i. Thus,

p(∆i |Θ∆i
) ∝ exp

(
−1

2
∥Xi∥ 2 ∆t

i Ω−1
y ∆i −

∑

j ̸= i

⟨Xi, Xj⟩∆t
j Ω−1

y ∆i − X t
i Y∆i

)

×
[

1 − π√
λ q
i |Ωy|

exp

(
−∆t

i Ω−1
y ∆i

2λi

)
1{∆i ̸=0} + π 1{∆i =0}

]

= exp

(
−1

2
(∆i + siHi)

t (si Ωy)
−1 (∆i + siHi)

)

× exp

(
siH

t
i Ω−1

y Hi

2

)
1 − π√
λ q
i |Ωy|

1{∆i ̸=0} + π 1{∆i =0}(5.3)

for all 1 ⩽ i ⩽ p, where

Hi = Ωy Y tXi +
∑

j ̸= i

⟨Xi, Xj⟩∆j and si =
λi

1 + λi ∥Xi∥ 2
.

This is still a multivariate Gaussian spike-and-slab distribution such that, by renormalizing,
the spike has probability

pi = P(∆i = 0 |Θ∆i
) =

π

π + (1 − π) (1 + λi ∥Xi∥ 2)−
q
2 exp

(
si H t

i Ω−1
y Hi

2

) .

On the other hand, coming back to (5.2), we can also write
∥∥∥(Y + X∆t Ω−1

y ) Ω
1
2
y

∥∥∥
2

F
= tr(Y tYΩy) + tr(∆Xt X∆t Ω−1

y ) + T̸= y

where T̸= y does not depend on Ωy. That leads, via (5.1), to

p(Ωy |ΘΩy) ∝ |Ωy|
n−p+N0+u−q−1

2 exp

(
− 1

2
tr((Y tY + V −1) Ωy)

− 1

2

(
tr(∆Xt X∆t Ω−1

y ) +
∑

∆i ̸=0

∆t
i Ω−1

y ∆i

λi

))

14
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= |Ωy|
n−p+N0+u−q−1

2 exp

(
−1

2
tr
(
(Y t Y + V −1) Ωy + ∆ (XtX +D−1

λ ) ∆t Ω−1
y

))
(5.4)

where N0 is given in (2.2) and Dλ = diag(λ1, . . . , λp). Finally, it is easy to see that, for all
1 ⩽ i ⩽ p,

(5.5) p(λi |Θλi
) ∝ 1√

λi
exp

(
−∆t

i Ω−1
y ∆i

2λi
− ℓi λi

)
1{∆i ̸=0} + λ

1
2
(q+1)−1

i e−ℓi λi 1{∆i =0}

whereas

(5.6) p(π |Θπ) ∝ πN0+a−1 (1 − π)p−N0+b−1.

We recognize in (5.3), (5.4), (5.5) and (5.6) the announced conditional posterior distributions,
which concludes the proof. □

5.2. The group-sparse setting: proof of Proposition 3.1. The full posterior distribu-
tion of the parameters conditional on X and Y satisfies

p(∆,Ωy, λ, π |Y,X) ∝ p(Y |X,∆,Ωy) p(∆ |Ωy, λ, π) p(λ) p(Ωy) p(π)

∝ |Ωy|
n
2 exp

(
−1

2

∥∥∥(Y + X∆t Ω−1
y ) Ω

1
2
y

∥∥∥
2

F

)

×
m∏

g=1

[
1 − π√

λ
q κg
g |Ωy|κg

exp

(
−tr(∆t

g Ω−1
y ∆g)

2λg

)
1{∆g ̸=0}

+ π 1{∆g =0}

]
λ

1
2
(q κg+1)−1

g e−ℓg λg

× |Ωy|
u−q−1

2 exp

(
−tr(V −1 Ωy)

2

)
π a−1 (1 − π) b−1.(5.7)

Like in the previous proof, a first important step is to note that, for all 1 ⩽ g ⩽ m,

∥∥∥(Y + X∆t Ω−1
y ) Ω

1
2
y

∥∥∥
2

F
=

∥∥∥∥∥YΩ
1
2
y +

m∑

j=1

Xj ∆t
j Ω

− 1
2

y

∥∥∥∥∥

2

F

= ∥Xg ∆t
g Ω

− 1
2

y ∥2F + 2
∑

j ̸= g

tr(∆j X t
j Xg ∆t

g Ω−1
y )

+ 2 tr(X t
g Y∆g) + T̸= g(5.8)

where the term T̸= g does not depend on ∆g. Thus, after a tedious calculation exploiting the
cyclic property of the trace, one can obtain the factorization

p(∆g |Θ∆g) ∝ exp

(
−1

2
∥Xg ∆t

g Ω
− 1

2
y ∥2F −

∑

j ̸= g

tr(∆j X t
j Xg ∆t

g Ω−1
y ) − tr(X t

g Y∆g)

)

×
[

1 − π√
λ

q κg
g |Ωy|κg

exp

(
−tr(∆t

g Ω−1
y ∆g)

2λg

)
1{∆g ̸=0} + π 1{∆g =0}

]

= exp

(
−1

2
tr
(
S−1
g (∆g +Hg Sg)

t Ω−1
y (∆g +Hg Sg)

))
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× exp

(
tr(H t

g Ω−1
y Hg Sg)

2

)
1 − π√

λ
q κg
g |Ωy|κg

1{∆g ̸=0} + π 1{∆g =0}(5.9)

for all 1 ⩽ g ⩽ m, where

Hg = Ωy Y tXg +
∑

j ̸= g

∆j X t
j Xg and Sg = λg

(
Iκg + λg X t

g Xg

)−1
.

We recognize the announced Gaussian spike-and-slab distribution, and the probability of the
spike is given, after renormalization, by

pg = P(∆g = 0 |Θ∆g) =
π

π + (1 − π) |Iκg + λg X t
g Xg|−

q
2 exp

(
tr(H t

g Ω−1
y Hg Sg)

2

) .

Following the same lines as the ones used to establish (5.4), we obtain from (5.7) the condi-
tional distribution

p(Ωy |ΘΩy) ∝ |Ωy|
n−p+N0+u−q−1

2 exp

(
− 1

2
tr((Y tY + V −1) Ωy)

− 1

2

(
tr(∆Xt X∆t Ω−1

y ) +
∑

∆g ̸=0

tr(∆t
g Ω−1

y ∆g)

λg

))

= |Ωy|
n−p+N0+u−q−1

2 exp

(
−1

2
tr
(
(Y t Y + V −1) Ωy + ∆ (XtX +D−1

λ ) ∆t Ω−1
y

))
(5.10)

where Dλ = diag(λ1, . . . , λ1, . . . , λm, . . . , λm) with each λg duplicated κg times, and since we
can note that, due to the continuous nature of ∆ |{∆ ̸= 0},

m∑

g=1

κg1{∆g ̸=0} = p−N0

for N0 given in (2.2). Next, we obtain in a simpler way that, for all 1 ⩽ g ⩽ m,

p(λg |Θλg) ∝ 1√
λg

exp

(
−tr(∆t

g Ω−1
y ∆g)

2λg
− ℓg λg

)
1{∆g ̸=0}

+ λ
1
2
(q κg+1)−1

g e−ℓg λg 1{∆g =0}.(5.11)

Finally,

(5.12) p(π |Θπ) ∝ πG0+a−1 (1 − π)m−G0+b−1

where G0 is defined in (3.2). We can check that the conditional distributions (5.9), (5.10),
(5.11) and (5.12) correspond to the ones announced in the proposition, which concludes the
proof. □

5.3. The sparse-group-sparse setting: proof of Proposition 4.1. The full posterior
distribution of the parameters conditional on X and Y satisfies

p(∆,Ωy, ν, λ, π |Y,X) ∝ p(Y |X,∆,Ωy) p(∆ |Ωy, ν, λ, π) p(ν) p(λ) p(Ωy) p(π)

∝ |Ωy|
n
2 exp

(
−1

2

∥∥∥(Y + X∆t Ω−1
y ) Ω

1
2
y

∥∥∥
2

F

)
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×
m∏

g=1

[
(
(1 − π1)Pg 1{∆g ̸=0} + π1 1{∆g =0}

)

× λ
1
2
(q κg+1)−1

g e−γg λg

κg∏

i=1

ν
1
2
(q+1)−1

gi e−ℓgi νgi

]

× |Ωy|
u−q−1

2 exp

(
−tr(V −1 Ωy)

2

) 2∏

j=1

π
aj−1
j (1 − πj)

bj−1(5.13)

where, for 1 ⩽ g ⩽ m,

Pg =

κg∏

i=1

[
1 − π2√

(νgi λg) q |Ωy|
exp

(
−∆t

gi Ω−1
y ∆gi

2 νgi λg

)
1{∆gi ̸=0} + π2 1{∆gi =0}

]
.

Using the same decompositions as (5.2) or (5.8), the full posterior distribution given above
leads to

p(∆gi |Θ∆gi
) ∝ exp

(
−1

2
∥Xgi∥ 2 ∆t

gi Ω−1
y ∆gi −

∑

h,j ̸= g,i

⟨Xgi, Xhj⟩∆t
hj Ω−1

y ∆gi − X t
giY∆gi

)

×
[

(1 − π1)

[
1 − π2√

(νgi λg) q |Ωy|
exp

(
−∆t

gi Ω−1
y ∆gi

2 νgi λg

)
1{∆gi ̸=0}

+ π2 1{∆gi =0}

]
1{∆g ̸=0} + π1 1{∆g =0}

]

= exp

(
−1

2
(∆gi + sgiHgi)

t (sgi Ωy)
−1 (∆gi + sgiHgi)

)

× exp

(
sgiH

t
gi Ω−1

y Hgi

2

)
(1 − π1) (1 − π2)√

(νgi λg) q |Ωy|
1{∆gi ̸=0}

+
(
(1 − π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}

)
1{∆gi =0}(5.14)

for 1 ⩽ g ⩽ m and 1 ⩽ i ⩽ κg, where ∆g\i is ∆g deprived of ∆gi,

Hgi = Ωy Y tXgi +
∑

h,j ̸= g,i

⟨Xgi, Xhj⟩∆hj and sgi =
νgi λg

1 + νgi λg ∥Xgi∥ 2
.

Here, we used the binary equalities stemming from {∆gi ̸= 0} ∩ {∆g ̸= 0} = {∆gi ̸= 0},
{∆gi = 0} ∩ {∆g ̸= 0} = {∆gi = 0} ∩ {∆g\i ̸= 0} and {∆gi = 0} ∩ {∆g = 0} =
{∆gi = 0}∩{∆g\i = 0}, which turn out to be very useful to separate ∆gi and Θ∆gi

. This is
characteristic of a multivariate Gaussian spike-and-slab distribution. By renormalizing, one
can see that the spike has probability

pgi = P(∆gi = 0 |Θ∆gi
) =

ρgi

ρgi + (1 − π1) (1 − π2) (1 + νgi λg ∥Xgi∥ 2)−
q
2 exp

(
sgi H t

gi Ω
−1
y Hgi

2

)

with

ρgi = (1 − π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}.
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Next, following (5.13) and the reasoning used to establish (5.4), we may also write

p(Ωy |ΘΩy) ∝ |Ωy|
n−p+N0+u−q−1

2 exp

(
− 1

2
tr((Y tY + V −1) Ωy)

− 1

2

(
tr(∆Xt X∆t Ω−1

y ) +
∑

∆gi ̸=0

∆t
gi Ω−1

y ∆gi

νgi λg

))

= |Ωy|
n−p+N0+u−q−1

2 exp

(
−1

2
tr
(
(Y t Y + V −1) Ωy + ∆ (XtX +D−1

λν ) ∆t Ω−1
y

))
(5.15)

where N0 is given in (2.2) and Dλν = diag(ν11λ1, . . . , ν1κ1λ1, . . . , νm1λm, . . . , νmκmλm). The
shrinkage parameters ν and λ are easier to handle. For 1 ⩽ g ⩽ m and 1 ⩽ i ⩽ κg,

p(νgi |Θνgi) ∝ 1
√
νgi

exp

(
−∆t

gi Ω−1
y ∆gi

2 νgi λg
− ℓgi νgi

)
1{∆gi ̸=0}

+ ν
1
2
(q+1)−1

gi e−ℓgi νgi 1{∆gi =0}(5.16)

whereas

p(λg |Θλg) ∝ λ
qN0g−1

2
g exp

(
−

tr(D−1
νg ∆t

g Ω−1
y ∆g)

2λg
− γg λg

)
1{∆g ̸=0}

+ λ
1
2
(q κg+1)−1

g e−γg λg 1{∆g =0}(5.17)

where N0g is defined in (4.2) and Dνg = diag(νg1, . . . , νgκg). Finally,

(5.18) p(π1 |Θπ1) ∝ πG0+a1−1
1 (1 − π1)

m−G0+b1−1

and

(5.19) p(π2 |Θπ2) ∝ πJ0+a2−1
2 (1 − π2)

p−N0+b2−1

where G0 and J0 are given in (3.2) and (4.3), respectively. For the latter result, we used
the fact that the number of non-zero columns in the non-zero groups must coincide with the
number of non-zero columns of ∆, that is p−N0. Like in the previous proofs, we recognize
the announced conditional distributions in (5.14), (5.15), (5.16), (5.17), (5.18) and (5.19).
That concludes these tedious calculations. □

5.4. Proof of Proposition 3.2. The result is obtained by following the steps of the proof
of Thm 2.1 in [31] but, beforehand, we need to clarify a few points to extend the reasoning
of the authors from q = 1 to q ⩾ 1 and take into account the adaptative shrinkage. For any
model k, let K = {k is selected} so that K = T when the true model t is considered. First,
recall that λ and π are fixed and rewrite (5.7) like

P∆(K |Y,X,Ωy) ∝ exp

(
−1

2

∥∥∥(Y + X(k) ∆t
(k) Ω−1

y ) Ω
1
2
y

∥∥∥
2

F

)

× (1 − π)|k|

π|k|
√

|Λk|q |Ωy|kr
exp

(
−

tr(∆t
(k) Ω−1

y ∆(k)D
−1
k )

2

)
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∝ (1 − π)|k|

π|k|
√
|Λk|q |Ωy|kr

exp

(
tr(∆̃(k) Fk ∆̃t

(k) Ω−1
y )

2

)

× exp

(
−1

2
tr
(

(∆(k) − ∆̃(k))Fk (∆(k) − ∆̃(k))
t Ω−1

y

))
(5.20)

where Fk = D−1
k + Xt

(k) X(k), Dk = diag((λℓ, . . . , λℓ)ℓ∈ k) with each λℓ duplicated κℓ times,

kr = ∥(κℓ)ℓ∈ k∥1, Λk = diag((λκℓ
ℓ )ℓ∈ k) and

∆̃(k) = −Ωy Yt X(k) F
−1
k .

Then, integrating over ∆(k), it follows (see Def. 1.1 with Σ1 = Ωy and Σ2 = F −1
k ) that

P(K |Y,X,Ωy) =

∫

Rq×κk

P∆(K |Y,X,Ωy, λ, π) d∆(k)

∝ (1 − π)|k|

π|k|
√
|Λk|q |Fk|q

exp

(
tr(∆̃(k) Fk ∆̃t

(k) Ω−1
y )

2

)

∝
(

1 − π

π

)|k|
|Λk|−

q
2 |Fk|−

q
2 exp

(
−1

2
tr
(
Y∗ t (In − X(k) F

−1
k Xt

(k))Y∗)
)

=

(
1 − π

π

)|k|
|Λk|−

q
2 |Fk|−

q
2 exp

(
−1

2

(
RSSk(∆̃∗

(k)) +
∥∥∆̃∗

(k)D
− 1

2
k

∥∥2
F

))

where Y∗ = YΩ
1
2
y , ∆̃∗

(k) = Ω
− 1

2
y ∆̃(k) and RSSk : H ∈ Rq×κk 7→ ∥Y∗−X(k)H

t∥2F is the residual
sum of squares function in the renormalized linear model indexed by k, that is

Y∗ = −X(k) ∆t
(k) Ω

− 1
2

y + E∗

with E∗ = E Ω
1
2
y ∼ MNn×q(0, In, Iq). Thus, the so-called posterior ratio between any false

model k and t is given by

PR(k, t) =
P(K |Y,X,Ωy)

P(T |Y,X,Ωy)
=
Qk

Qt

(
1 − π

π

)|k|−|t|
e−

1
2
(R̃k−R̃t)

with Qk = |Λk|−
q
2 |Fk|−

q
2 and R̃k = RSSk(∆̃∗

(k)) + ∥∆̃∗
(k)D

− 1
2

k ∥2F , using the notation of [31].
In particular, due to the generalized ridge penalty,

(5.21) ∆̃∗
(k) = arg min

H

(
RSSk(H) +

∥∥HD− 1
2

k

∥∥2
F

)

so that for nested models k1 and k2 (with k1 ⊆ k2), we must have R̃k2 ⩽ R̃k1 . Let also
Rk = ∥(In − Π(k))Y∗∥2F = ∥(Iq ⊗ (In − Π(k))) vec(Y∗)∥22. Cochran’s theorem entails the chi-
squared distributions Rt ∼ χ2(q (n−rt)) and Rt−Rk ∼ χ2(q (rk−rt)) for any ‘bigger’ model
k ⊃ t and q ⩾ 1. Combining all these preliminary considerations, the strategy of [31] now
applies and leads, under our revised hypotheses, to

1 − P(T |Y,X,Ωy)

P(T |Y,X,Ωy)
=
∑

k ̸= t

PR(k, t)
P−→ 0.

□
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6. Empirical results

In this section, let us call (s), (gs) and (sgs) the related settings, and let us denote by
(ad) the adaptative shrinkage and by (gl) the global shrinkage. First of all, these models
contain many hyperparameters that have to be carefully tuned. Our experiments showed
that, unsurprinsingly, the results are strongly impacted by the prior amount of shrinkage on
∆, driven by ℓ and even by γ for (sgs). Apart from the usual cross-validation procedures, we
could stay in line with our Bayesian approach and suggest conjugate Gamma hyperpriors.
This is very easy to implement, but the hyperparameters are now replaced by other hyper-
parameters and the same questions arise. Instead, like in [29] and [17], we follow the idea of
[22] and we use a Monte-Carlo EM algorithm. By way of example, from the full posterior
probability (5.1) and since λi ∼ Γ(α, ℓi) for all i, it is not hard to see that, with (s),

ln p(∆,Ωy, λ, π |Y,X) =

p∑

i=1

(α ln ℓi − ℓi λi) + T̸= ℓ

where the term T̸= ℓ does not depend on ℓ. Thus, the k-th iteration of the EM algorithm
should lead to

ℓ
(k)
i =

1
2
(q + 1)

E(k−1)[λi |Y, X]
and ℓ (k) =

p
2
(q + 1)∑p

i=1 E(k−1)[λi |Y, X]

for the adaptative shrinkage and the global shrinkage (λi = λ), respectively. The intractable
conditional expectations are then estimated with the help of the Gibbs samples. For (gs),
the results are mainly the same as above (replace q+1 by qκg +1 in the first case, p(q+1) by
qp+m in the second case and consider 1 ⩽ g ⩽ m instead of 1 ⩽ i ⩽ p), and similar results
also follow with (sgs). Recall that our definitions of the adaptative and global shrinkages
are given in the corresponding sections, in the description of the hierarchical models. The
tuning of u and V (or v) is actually trickier. Because E[Ωy] = uV , we set V = 1

u
Iq and u

is conveniently chosen to be the smallest integer such that Ωy is (almost surely) invertible,
that is u = q (see e.g. [3]). This is particularly adapted when the dataset is standardized.
Finally, a and b reflect the degree of sparsity to introduce in the direct links. We can set
a≫ b to promote sparse settings, which is potentially interesting when p≫ n, but a = b = 1
is a standard non-informative choice and a < b may also be useful for variable selection (see
e.g. the real dataset of Section 6.2). They can be chosen from a cross-validation step
(for prediction purposes) or to enforce some degree of sparsity (for selection purposes), just
like a practitioner manages the tuning parameter of the Lasso. The posterior median is
used to estimate ∆ and get sparsity whereas the posterior mean is used to estimate Ωy.
Indeed, we don’t want to impose any sparsity on Ωy (q is small), so we decided to retain
this standard choice. But the concern is much greater for ∆ because some coordinates must
be exactly zero. This is the reason why the posterior median seemed a more appropriate
choice (in particular, it suffices for the sampler to generate zeros more than half the time
for the empirical posterior median to be zero). Due to the huge amount of calculations in
the simulations, the estimations are made on the basis of 3000 iterations of the sampler in
which the first 2000 are burn-ins. This is revised upwards for the real data (10000 iterations
with 5000 burn-ins).

Remark 6.1. To the best of our knowledge, there is no simple way to sample from the MGIGd

distribution as soon as d > 1. The recent method described in Sec. 3.3.2 of [8], relying on
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the Matsumoto-Yor property (see Thm. 3.1 of [19]) to get a MGIGd sample from the very
standard GIG and Wd distributions, is unfortunately inapplicable in our context. Indeed, for
example in the sparse setting, that would require finding z ∈ Rq such that Y t Y+V −1 = b zzt

for some b > 0, which is clearly impossible since Y t Y+V −1 has full rank. In [9], the authors
show that MGIGd(ν, A, B) is a unimodal distribution of which mode M ∈ S d

++ is the unique
solution of the algebraic Riccati equation (d + 1 − 2 ν)M + MBM = A, and a standard
importance sampling approach follows for the mean of the distribution. Our fallback solution
is to solve this Riccati equation at each step and to replace all MGIGd random variables
by the (unique) mode of the consecutive distributions. To assess the credibility of this ad
hoc sampling, the ‘oracle’ models in which Ωy and the shrinkage parameters are known are
added to the simulations. We will see that, despite an unavoidable loss, the results remain
pretty consistent. In particular, the support recovery does not appear to be impacted.

6.1. A simulation study. In this empirical section1, the matrix of order d ⩾ 1 given by

Cd =
(
ρ|i−j|)

1⩽ i,j ⩽ d

will be used as a typical covariance structure, for some 0 ⩽ ρ < 1. Thus, the precision
matrices will be chosen as a multiple of C −1

d to keep the same guideline in our simulations.
The responses

Yk = B tXk + Ek

are generated through relations (1.1) where, for all 1 ⩽ k ⩽ n, Ek ∼ N (0, R). Because our
models assume prior independence (or group-independence) in the columns of ∆, it seems
necessary to look at the influence of correlation among the predictors. So the standard
choice Xk ∼ N (0, Ip) is first considered, but in some cases we will also test Xk ∼ N (0, Cp)
for ρ = 0.5 and ρ = 0.9 to introduce a significant correlation between close predictors (see
Figure 1). For each experiment, the support recovery of ∆ is evaluated thanks to the so-called
F -score given by

F =
2 pr re
pr + re

where pr =
TP

TP + FP
and re =

TP

TP + FN

are the precision and the recall, respectively, and where T/F and P/N stand for true/false
and positive/negative. To assess prediction skills, ne randomly chosen observations are
used for estimation (for different ne) and the remaining nv = n − ne = 100 independent
observations serve to compute the mean squared prediction error (MSPE). The results are
compared to the ones obtained via the penalized maximum of likelihood (PML) approach of
[33] thanks to the correctly adapted implementations of [6] and [21], with a cross-validated
tuning parameter. In addition, we compute the sparse precision matrix estimations given
by the graphical Lasso (GLasso) of [10], and by the CLIME algorithm of [4], using the R

packages glasso and fastclime, respectively. Note that we always keep a small value for q,
so ∆ is penalized but not Ωy when possible (PML and GLasso). Finally, the recent approach
of [25], called ANT and based on the individual estimations of the partial correlations, is also
implemented. Unlike PML, GLasso and CLIME, sparsity is not the result of penalizations
for ANT but, instead, a threshold is deduced from the asymptotic normality of the estimates
to decide which are significant and which can be set to zero. Let us add some preliminary

1The codes and the dataset are available at https://github.com/FredericProia/BayesPGGM
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comments about the methods compared in these simulations, all related to high-dimensional
precision matrix estimation.

− There is a important advantage in favor of our Bayesian approaches, PML and ANT
because they do not need the estimation of Ωx ∈ S p

++. Indeed, extracting the estimation
of ∆ ∈ Rq×p and Ωy ∈ S q

++ from that of the full precision matrix Ω ∈ S q+p
++ may generate

a drastic bias when p ≫ q, and that explains in particular why GLasso and CLIME give
pretty bad results in what follows.

− In its standard version, ANT is not designed to produce column-sparsity or group-sparsity
in ∆. So, by considering multiple testing at the column or even group level, we allow
groups of coefficients to be zeroed simultaneously. We have observed that this modified
ANT method (called ANT* in the simulations) loses a bit in prediction quality but is
greatly improved for support recovery.

− Unfortunately, this is not appropriate for PML, GLasso and CLIME. It is therefore not
surprising that they are largely outperformed by our Bayesian models and ANT* for (gs)
and (sgs). Using group-penalties, which to the best of our knowledge still does not exist,
should improve the results of these methods to some extent.

The seven scenarios below, from Scen. 0 to Scen. 6, as heterogeneous as possible, repre-
sent the diversity of the situations (high-dimensionality, kind of sparsity, dimension of the
responses, coefficients hard to detect, etc.). We repeat each one N = 100 or N = 50 times,
depending on the computation times involved, and the numerical results for ne = 400 and
uncorrelated predictors are summarized in Table 1. In addition, the evolution of MSPE is
represented on Figure 1 for Scen. 1, 3 and 5, when ne grows from 100 to 500, both for un-
correlated and correlated predictors. The three configurations (s), (gs) and (sgs) are tested
on the grouped scenarios (from Scen. 3 to Scen. 6) with the adaptative shrinkage.

− Scenario 0 (small dimension, no sparsity). Let q = 1, p = 5 and set ωy = 1. We fill ∆
with N (0, 2ωy) coefficients.

− Scenario 1 (sparse direct links, univariate responses). Let q = 1, p = 50 and set ωy = 1.
We randomly choose 10 locations of ∆ filled with N (0, ωy) coefficients while the others
are zero.

− Scenario 2 (sparse direct links, multivariate responses). Let q = 2, p = 80 and set
Ωy = 2C −1

2 with ρ = 0.5. We randomly choose 10 columns of ∆ filled with N2(0,Ωy)
coefficients while the others are zero.

− Scenario 3 (group-sparse direct links, univariate responses). Let q = 1, p = 320 and set
ωy = 1. We consider m = 5 groups of size 100, 10, 100, 10 and 100. The two groups of
size 10 are filled with N (0, 0.5ωy) and N (0, ωy) coefficients, respectively, while the other
groups are zero.

− Scenario 4 (group-sparse direct links, multivariate responses). Let q = 3, p = 500 and
set Ωy = 3C −1

3 with ρ = 0.5. We divide the columns of ∆ into m = 25 groups of size
20. We randomly choose 3 groups filled with N3(0, 0.5 Ωy), N3(0,Ωy) and N3(0, 1.5 Ωy)
coefficients, respectively, while the other groups are zero.

− Scenario 5 (sparse-group-sparse direct links, univariate responses). Let q = 1, p = 150
and set ωy = 1. We consider m = 3 groups of size 50. Only the second group is non-zero,
into which we randomly fill 10 locations with N (0, ωy) coefficients.

− Scenario 6 (sparse-group-sparse direct links, multivariate responses). Let q = 5, p = 1000
and set Ωy = 5C −1

5 with ρ = 0.5. We divide the columns of ∆ into m = 20 groups of
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size 50, and a randomly chosen one is half filled with N5(0,Ωy) coefficients. The others
columns of ∆ are zero.

Scenario 0

Mod. Shr. MSPE F pr re
(s-or) - 1.01 (0.11) 1.00 1.00 1.00
(s) (ad) 1.03 (0.13) 1.00 1.00 1.00
(s) (gl) 1.03 (0.13) 1.00 1.00 1.00

PML - 1.01 (0.16) 1.00 1.00 1.00
GLasso - 1.00 (0.15) 1.00 1.00 1.00
CLIME - 1.00 (0.15) 1.00 1.00 1.00
ANT* - 1.04 (0.13) 1.00 1.00 1.00

Hyperparam. π = 0

Scenario 1

Mod. Shr. MSPE F pr re
(s-or) - 1.02 (0.13) 0.95 1.00 0.90
(s) (ad) 1.04 (0.13) 0.95 1.00 0.90
(s) (gl) 1.03 (0.13) 0.95 1.00 0.90

PML - 1.08 (0.15) 0.82 0.69 1.00
GLasso - 2.37 (0.96) 0.78 0.77 0.80
CLIME - 2.52 (0.98) 0.79 0.78 0.80
ANT* - 1.25 (0.22) 0.87 0.85 0.90

Hyperparam. (25, 1)

Scenario 2

Mod. Shr. MSPE F pr re
(s-or) - 0.52 (0.09) 0.95 1.00 0.90
(s) (ad) 0.54 (0.09) 0.95 1.00 0.90
(s) (gl) 0.55 (0.08) 0.95 1.00 0.90

PML - 0.77 (0.15) 0.86 1.00 0.75
GLasso - 1.74 (0.49) 0.72 0.91 0.60
CLIME - 1.11 (0.35) 0.73 0.76 0.70
ANT* - 1.04 (0.44) 0.90 0.89 0.91

Hyperparam. (80, 1)

Scenario 3

Mod. Shr. MSPE F pr re
(gs-or) - 1.03 (0.27) 1.00 1.00 1.00
(gs) (ad) 1.04 (0.27) 1.00 1.00 1.00
(gs) (gl) 1.04 (0.34) 1.00 1.00 1.00
(s) (ad) 1.16 (0.27) 0.92 1.00 0.85
(sgs) (ad) 1.07 (0.25) 0.92 1.00 0.86
PML - 1.80 (0.36) 0.89 1.00 0.80

GLasso - 4.23 (1.61) 0.58 0.50 0.70
CLIME - 2.98 (1.22) 0.68 0.90 0.55
ANT* - 1.52 (0.95) 1.00 1.00 1.00

Hyperparam. (100, 1) – (5, 1) – (5, 1, 25, 1)

Scenario 4

Mod. Shr. MSPE F pr re
(gs-or) - 0.40 (0.14) 1.00 1.00 1.00
(gs) (ad) 0.45 (0.16) 1.00 1.00 1.00
(gs) (gl) 0.46 (0.17) 1.00 1.00 1.00
(s) (ad) 0.52 (0.18) 0.98 1.00 0.96
(sgs) (ad) 0.48 (0.17) 0.99 1.00 0.98
PML - 3.18 (0.53) 0.75 0.94 0.62

GLasso - 9.46 (1.38) 0.46 0.66 0.35
CLIME - 8.32 (1.51) 0.48 0.45 0.52
ANT* - 6.53 (1.22) 1.00 1.00 1.00

Hyperparam. (100, 1) – (25, 1) – (50, 1, 50, 1)

Now, let us try to summarize our observations. In terms of support recovery, the Bayesian
spike-and-slab framework and the modified ANT* method give results incomparably better
than the sparsity-inducing penalized approaches (PML, GLasso and CLIME). As suggested
in Rem. 3.3 of [21], this may be a consequence of the fact that the cross-validation steps
calibrate the models to reach the best prediction error, sometimes at the cost of support
recovery by picking a small penalty level. The superiority of ANT over GLasso and CLIME
is recognized and discussed in [25], but this also highlights the ability of our Bayesian models
to reach good results both in prediction and in support recovery. It can also be seen that
(s) gives weaker results than (sgs) in the grouped scenarios, probably due to the fact that it
does not take into account the group structure, but still better than the penalized methods.
However, the computational times involved (see remarks below) make (s) less relevant than
(sgs) in these situations, even if the results are not drastically different. Unsurprisingly,
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Scenario 5

Mod. Shr. MSPE F pr re
(sgs-or) - 1.00 (0.15) 0.96 1.00 0.92
(sgs) (ad) 1.04 (0.16) 0.95 1.00 0.91
(sgs) (gl) 1.03 (0.16) 0.91 1.00 0.84
(s) (ad) 1.08 (0.14) 0.93 1.00 0.87
(gs) (ad) 1.24 (0.19) 0.33 0.20 1.00
PML - 1.92 (0.60) 0.89 1.00 0.80

GLasso - 3.48 (1.30) 0.78 0.86 0.71
CLIME - 1.88 (0.92) 0.79 1.00 0.65
ANT* - 1.26 (0.98) 0.88 0.86 0.90

Hyperparam. (50, 1) – (3, 1) – (3, 1, 50, 1)

Scenario 6

Mod. Shr. MSPE F pr re
(sgs-or) - 0.21 (0.13) 1.00 1.00 1.00
(sgs) (ad) 0.24 (0.32) 1.00 1.00 1.00
(sgs) (gl) 0.24 (0.33) 1.00 1.00 1.00
(s) (ad) 0.29 (0.26) 0.98 1.00 0.96
(gs) (ad) 0.31 (0.30) 0.67 0.50 1.00
PML - 0.50 (0.17) 0.83 0.95 0.74

GLasso - 3.83 (0.77) 0.50 0.97 0.34
CLIME - 2.98 (0.51) 0.51 1.00 0.34
ANT* - 2.10 (0.72) 1.00 1.00 1.00

Hyperparam. (100, 1) – (20, 1) – (20, 1, 50, 1)

Table 1. Medians of the mean squared prediction errors (with standard de-
viations), F -scores, precisions and recalls after N = 100 repetitions of Scen. 0
to Scen. 6 (N = 50 for Scen. 4 and Scen. 6), with ne = 400 and uncorrelated
predictors. The suffix -or is used to denote ‘oracle’ settings. The hyperparam-
eters chosen for the prior spike probability are indicated in the last row of each
table, from left to right: (a, b) for (s) and (gs), (a1, b1, a2, b2) for (sgs).

(gs) is not suitable in the sparse-group-sparse settings in terms of support recovery. Our
experiments show that it is able to identify influential groups without being mistaken but,
even though the resulting estimates are small where they should be zero, it is not designed
to be used for bi-level selection. Figure 1 shows that the results are pretty stable from
ne = 200 observations in the learning set: for ne < 200 the MSPEs are rather chaotic
before stabilizing. The same figure also highlights that the presence of correlation in the
predictors does not seem to have a significant effect on the estimation procedure, except for
small size samples and high correlation where the degradation is noticeable. Overall, the
real strength of the Bayesian spike-and-slab approach is clearly the support recovery of the
direct links between predictors and responses but it seems that one can hardly expect to
deal with very high-dimensional studies as long as we do not impose a group structure or
a huge degree of sparsity. The highly competitive MSPEs obtained confirm the relevance
of Bayesian PGGMs not only for variable selection but also for prediction purposes in the
context of high-dimensional regressions.

6.2. Identification of a sparse set of predictors in a real dataset. Let us now study
the Hopx dataset, fully described in [23]. It contains p = 770 genetic markers spread over
m = 20 chromosomes from n = 29 inbred rats. It also contains the corresponding measured
gene expression levels of q = 4 tissues (adrenal gland, fat, heart and kidney). The goal is to
identify a sparse set of predictors that jointly explain the outcomes, with the natural group
structure formed by chromosomes (see Table 2). This dataset has already been analyzed in
[16], using a Bayesian regression without group structure, and later in [17] including group
and sparse-group structures. So the PGGM is supposed to bring new perspectives about
relationships in terms of partial correlations. A particularity of this dataset is that the
responses are very correlated, so we should expect an estimation of Ω−1

y with significant non-
diagonal elements and a clear advantage in using PGGMs. Indeed, a predictor considered
to be influencing all the outcomes could be the result of a direct relation to one tissue
propagated to the others by an artificial correlation effect. As can be seen on Figure 2, the
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Figure 1. Medians of the mean squared prediction errors obtained after N =
100 repetitions of Scen. 1 (top), Scen. 3 (middle) and Scen. 5 (bottom) with
±1 standard deviation and ne growing from 100 to 500. The black curves
correspond to uncorrelated predictors (ρ = 0) while the blue and red curves
correspond to correlated predictors (ρ = 0.5 and ρ = 0.9, respectively).

predictors are also highly correlated with their neighbors (for the sake of readability, we only
represent the correlogram of predictors located on chromosomes 8, 9 and 10).

Chr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Nb. 74 67 63 60 39 45 52 43 31 51 21 26 33 22 15 27 18 30 34 19

Table 2. Number of markers on each chromosome, which correspond to the
sizes κg of each group for 1 ⩽ g ⩽ 20 when running (gs) and (sgs).
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Figure 2. Correlogram of responses (left) and correlogram of predictors lo-
cated on chromosomes 8, 9 and 10 (right). The colormap associates red with
negative correlations and blue with positive correlations.

The small sample size relative to the number of covariates (29/770) weakens the study.
To strengthen our conclusions, we decided to run N = 100 experiments based on 25 ran-
domly chosen observations and to aggregate the results. We first investigate the selection
of predictors at the chromosomes scale, i.e. we run (gs) according to the previous protocol
with an adaptative shrinkage and we choose (a, b) = (1, 20) in the prior probability π. The
empirical distribution of the posterior probability of inclusion for each chromosome is repre-
sented on the left of Figure 3. The selection procedure focuses on chromosomes 14, 15 and
17 (and not just on chromosomes 2 and 3 as in [17]) but the estimation process gives an
overwhelming advantage to chromosome 14, far ahead of its neighbors. This is undoubtedly
the influence of D14Mit3, a marker located on chromosome 14 and known to have a very
significant effect on this dataset. The main conclusion to be drawn at this stage is that chro-
mosome 14 has a positive effect on Fat and a negative effect on Heart, as can also be seen
on the right of Figure 3. Therefore, it is likely that the overall positive influence of D14Mit3
identified by previous authors is due to the combination of a direct positive link with Fat, a
direct negative link with Heart and a correlation effect from the outcomes. This hypothesis
is given additional credibility by the numerical results: from (gs), the corresponding col-
umn of ∆ is approximately (0.00, 0.04,−0.09, 0.00) which, through relations (1.1), leads to
(0.15, 0.25, 0.34, 0.21) as estimated regression coefficients. This roughly corresponds to the
values indicated in Tab. 2 of [17], at least for the main effect on Heart. Thus for chromosome
14, the numerical results coincide but the interpretations are clearly different. Of course,
similar reasonings can be carried out for the less influent chromosomes.

It is perhaps more interesting to look for a bi-level selection in order to identify a sparse
set of markers and not only chromosomes. In this regard, (sgs) is launched using the same
statistical protocol, adaptative shrinkage and hardly informative hypermarameters a1 = 3,
b1 = 1, a2 = 1 and b2 = 1 which happen to be sufficient to generate a huge degree of sparsity.
While many chromosomes are excluded from the model given by (gs), with (sgs) we see
some contributions localized in certain chromosomes having little influence when taken as a
whole. At the markers scale, the randomness of the sampler and the high level of correlation
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Figure 3. Empirical distribution of the posterior probability of inclusion es-
timated by (gs) for each chromosome (left). Aggregated (gs) estimation of ∆
on chromosome 14 with D14Mit3 hilighted (right).

between close predictors probably explain the presence of artifacts which sometimes make
it difficult to distinguish the real contributions from the background noise. We therefore
use the N = 100 experiments to build 95% confidence intervals and keep only significant
estimates. By way of example, Figure 4 displays the results obtained on chromosomes 7, 8
and 14. The main markers standing out are summarized in Table 3 together with the kind of
direct influences detected. Markers already highlighted in [16] or [17] are also indicated. One
can see that most of our conclusions coincide, but new markers are suggested (especially on
chromosome 8) and others have disappeared. Overall, the more stringent statistical protocol
that we used led to the retention of fewer predictors with more guarantee. An important
consequence of this study is the new interpretations in terms of direct influences allowed by
PGGMs. Especially as the residual correlations, hidden in the estimation of R = Ω−1

y and
closely related to the correlations between the responses, are very high (greater than 0.7),
as we suspected from Figure 2.

Figure 4. Aggregated (sgs) estimation of ∆ on chromosomes 7, 8 and 14,
from left to right. The hilighted markers are D7Cebr205s3, D7Mit6, D7Rat19,
Myc and D7Rat17 for chromosome 7, D8Mgh4, D8Rat135 and Rbp2 for chromo-
some 8 and D14Rat8 and D14Mit3 for chromosome 14.
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Chromosomes Markers Main direct influences

3 D3Mit16* Adrenal+ Heart–

7

D7Cebr205s3* Fat+ Heart–
D7Mit6* Fat–
D7Rat19* Heart–
Myc* Adrenal+

D7Rat17 Adrenal+ Heart–

8
D8Mgh4 Adrenal– Heart–
D8Rat135 Fat+ Heart–
Rbp2 Fat–

10
D10Rat33* Adrenal+
D10Mit3* Adrenal+
D10Rat31* Fat–

11 D11Rat47 Fat–

14
D14Rat8* Fat+ Heart–
D14Mit3* Fat+ Heart–

15
D15Cebr7s13 Kidney–
D15Rat21* Adrenal+ Kidney–

17 Prl Adrenal– Kidney–

20 D20Rat55 Kidney–

Table 3. Main relations detected by (sgs). X* means that marker X has
already been suggested by previous authors in this dataset. Y– (Y+) means
that response Y is negatively (positively) influenced by X.

6.3. Discussion and Conclusion. To conclude, we would like to draw the attention of
the reader to some weaknesses of the study, still under investigation. On the one hand, as
soon as p is large (say, p ⩾ 500), the Bayesian studies should be conducted with a group
structure or by promoting very sparse settings because due to the outline of the sampler,
looping over each column of ∆ may quickly become intractable. A group structure limits
the number of loops (only m ≪ p per sampler iteration), although each loop may require
the generation of large Gaussian vectors (up to (q × κg)-dimensional), so compromises are
needed. Subdividing the dataset is natural when it is intrinsically equipped with a group
structure (e.g. that of the previous section), we could suggest otherwise a clustering of the
set of predictors to gather similar entries and control the size of the groups. At this stage,
our procedures cannot compete with the Lasso-type algorithms (GLasso, CLIME or even
ANT) in terms of computational times. This is an issue on which future studies should focus
(ongoing works are devoted to translating the samplers into more efficient environments),
enhanced MCMC methods may also be useful or novel computational strategies like the
‘shotgun’ stochastic algorithm of [31]. On the other hand, the procedures are obviously very
sensitive to the initialization of the sampler, especially when p≫ n. For example, the term
|Iκg + λg X t

g Xg| is likely to explode when κg is large and λg > 1, that is why λg has to be
carefully controlled via an accurate initial choice of ℓg. Our heuristic approach is to initialize
ℓg such that E[λg] < 1 to control the behavior of |Iκg + λg X t

g Xg| during the first iterations.
This works pretty well in practice, but needs to be done on a case-by-case basis, which could
be improved. From a theoretical point of view, we should obviously enhance the estimation
procedure by sampling from the MGIGq distribution for q > 1, and not using the mode.
Our fallback solution gives satisfactory but not completely rigorous results. In addition, it
could be interesting to generalize the support recovery guarantee of Proposition 3.2 to (sgs),
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which is certainly possible at the cost of a few additional developments. Overall, our study
shows that for the moderate values of p (up to 103 or 104), the Bayesian approach of the
partial Gaussian graphical models is a very serious alternative to the frequentist penalized
estimations, for prediction but also and especially for support recovery.
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Chapitre 3

Applications aux sciences du vivant

Dans le cadre de collaborations avec l’Institut de Recherche en Horticulture et Se-
mences (IRHS), unité mixte de recherche INRAE/Université d’Angers/Institut Agro, des
études sont régulièrement menées afin de répondre à des besoins interdisciplinaires en
traitement et analyse des données. Des travaux ont été valorisés à ce jour, nous allons
dans ce dernier chapitre nous contenter de résumer l’un d’entre eux avant de nous focaliser
sur un autre. Tous deux traitent de populations de rosiers, du point de vue phénotypique
(courbes de floraison) et génotypique (reconstruction de généalogies).

3.1 Modélisation de courbes de floraison

L’article Pröıa et al. (2016) publié dans Journal of Theoretical Biology est issu d’un
travail en commun avec A. Pernet, T. Thouroude, G. Michel et J. Clotault, de l’IRHS. Il
est dédié à l’étude de caractères phénotypiques dans une population végétale à des fins
de modélisation et de classification.

Résumé

On souhaite modéliser les courbes de floraison d’une population de rosiers (mesurées
en densité de fleurs sur la plante au cours du temps) avec un double objectif : mettre en
évidence et décrire par des indicateurs pertinents les vagues de floraison, puis en déduire
une classification des rosiers. Nous proposons à cet égard de sélectionner pour chaque
individu un modèle de mélange gaussien estimé sur un échantillon dont la distribution
correspond à la courbe (en tenant compte des valeurs manquantes), voir par exemple la
Figure 3.1 ci-dessous. La sélection du nombre de composantes dans les mélanges se fait
par minimisation du critère ad hoc défini par

∀ k ⩾ 1, BIC∗(k) =
(
c+ BIC(k)

) (
1 + e−αdk

)
(3.1)

avec c ⩾ 0, α ⩾ 0, d1 = +∞ et pour k ⩾ 2,

dk = min
1⩽ j1, j2 ⩽ k

(j1 ̸=j2)

| µ̃j1 − µ̃j2| (3.2)

où µ̃j désigne la moyenne estimée de la j-ème composante alors que c et α sont des
paramètres de régulation. On pénalise ainsi les vagues trop proches l’une de l’autre,
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conséquence de la présence d’asymétrie qui conduit le BIC usuel à suggérer beaucoup
trop de composantes. Ce phénomène est particulièrement visible sur la Figure 3.2 où l’on
voit que le BIC impose un nombre irréaliste de vagues alors que le BIC∗ est minimisé
pour k = 3 composantes.

Figure 3.1 – Exemple de courbe de floraison (à gauche) modélisée par un mélange
gaussien (à droite) à k = 3 composantes.

Figure 3.2 – Exemple identique au précédent (à gauche) avec évolution des critères BIC
en noir et BIC∗ en bleu (à droite).

De tous ces mélanges, on tire des indicateurs qui permettent de réduire la dimension
de l’étude : la courbe de floraison d’un individu se trouve décrite par le nombre de vagues,
l’intensité maximale, l’aire sous la courbe de la première floraison, la proportion de l’aire
totale correspondant à la première floraison ainsi que son démarrage (la précocité), et
quelques autres dont l’énumération serait inutile ici, tous motivés par des arguments issus
de l’expertise biologique. Une analyse descriptive de ces indicateurs à travers une ACP
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révèle que les traits principaux caractérisant la floraison d’un rosier sont liés à l’intensité
de sa remontée de floraison, c’est-à-dire à sa (re-)floraison après la première poussée,
et de manière orthogonale à sa précocité. Cela donne finalement lieu à un clustering
à deux niveaux : par k-means sur le premier plan factoriel et par la méthode des k-
means longitudinaux (KML) de Genolini et Falissard (2010) sur les courbes renormalisées
dans chaque cluster, afin d’obtenir des profils caractéristiques de floraison. La Figure 3.3
montre ainsi les profils obtenus dans le cluster des rosiers non-remontants. En lien avec
nos conclusions préalables, on peut constater que la précocité apparâıt comme le principal
élément discriminant dans une classe où la remontée est inexistante.

Figure 3.3 – Profils issus de KML dans le cluster des rosiers non-remontants.

Perspectives

Les perspectives empiriques de cette étude sont entre les mains des biologistes, qui
espèrent que les indicateurs obtenus et les analyses statistiques, croisés avec les conditions
spécifiques à l’entretien de cette population de rosiers, permettront de faire avancer d’un
pas la compréhension des contrôles génétiques et environnementaux des processus biolo-
giques qui sous-tendent les vagues de floraison. Mais revenons simplement sur un point
théorique. L’introduction du critère BIC∗ pour pallier la dissymétrie des vagues donne de
très bons résultats numériques et nous permet d’atteindre les objectifs souhaités, mais
elle manque de rigueur de par son côté arbitraire. Avec le recul, il pourrait être judi-
cieux d’aborder la modélisation des courbes par des mélanges Gamma, à l’image de ce
que proposent Wiper et al. (2001), munis d’un critère de sélection plus conventionnel.
D’un point de vue pratique, nos indicateurs sortis sur trois années d’étude sont actuelle-
ment utilisés dans le cadre d’un postdoctorat sur de la génétique d’association (GWAS,
Genome-Wide Association Studies) : construction de modèles qui essayent d’expliquer
la variation d’un phénotype des rosiers de la collection Loubert (celle, angevine, dont
l’analyse a été fournie), à partir de la variation à 68000 SNPs (marqueurs moléculaires
constitués d’un nucléotide seulement), de la connaissance de la structuration et de “l’ap-
parentement” (qui n’est pas une généalogie, mais une analyse brute relative à la part
d’allèles en communs). Le travail s’avère important pour avoir des caractères quantitatifs
et pas seulement des classes arbitrairement créées.
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3.2 Reconstruction probabiliste de généalogies

Nous en arrivons à la dernière étude que nous souhaitions mettre en avant dans ce
mémoire. Pröıa et al. (2019) est le fruit d’une collaboration avec F. Panloup, C. Trabelsi
et J. Clotault, également publiée dans Journal of Theoretical Biology. Contrairement à
la précédente, cette étude n’est pas une analyse statistique mais une construction proba-
biliste. À partir de marqueurs génétiques et d’autres informations de nature descriptive,
on va chercher à reconstruire rétrospectivement l’arbre généalogique d’une population
de rosiers avec comme inspiration les travaux de Chaumont et al. (2017), mais dans un
contexte plus général.

Résumé

On dispose de marqueurs génétiques issus d’une population de rosiers diplöıdes 2x
(les chromosomes vont par 2), triplöıdes 3x (par 3) et tétraplöıdes 4x (par 4), qualifica-
tifs auxquels on en profite pour adjoindre les haplöıdes 1x (par 1). Connaissant la date
d’obtention de chaque individu, on se propose de mettre au point la construction d’un
graphe orienté et probabilisé illustrant les relations de parenté directe les plus probables
entre les individus, possédant donc la structure d’arbre. Formellement, on va considérer
qu’une généalogie sur notre population P est un élément de l’ensemble

Υ(P) =
∏

e∈P

{
T(e) ∪ (e, ∅)

}
avec T(e) =

⋃

s∈S(e)
(e, s) (3.3)

où S(e) ⊂ P 2 contient les couples (p1, p2) avec p1 ̸= p2 génétiquement et chronologique-
ment candidats à la parenté directe de l’individu e. En conséquence, la vraisemblance
d’une généalogie T ∈ Υ(P) sera naturellement définie comme la probabilité qu’elle a
d’être observée,

ℓ(T ) = P(T ) (3.4)

grâce au support d’un ensemble d’hypothèses et de règles de calcul formalisant notre
modèle. La première difficulté est liée aux schémas de reproduction qui sont plus com-
plexes que le schéma standard {a, b} × {c, d} 7→ {ac, ad, bc, bd} valable en présence de
diplöıdie. Le mix 2x/3x/4x donne lieu à 10 schémas de reproduction, chacun d’entre
eux engendré par la production des gamètes spécifiques à chaque plöıdie : on retiendra
ici qu’un 2x peut produire 2 gamètes haplöıdes, qu’un 3x peut produire 3 gamètes ha-
plöıdes et 3 gamètes diplöıdes, et qu’un 4x peut produire 6 gamètes diplöıdes, le tout
uniformément. La Figure 3.4 ci-dessous donne à titre d’exemple les schémas de repro-
duction associés aux croisements de type 3x/3x, qui peuvent donc engendrer des enfants
2x, 3x ou même 4x : de 2 parents triplöıdes, on peut voir qu’il en découle 36 enfants
potentiels dont 9 sont diplöıdes, 18 sont triplöıdes et 9 sont tétraplöıdes. (Le problème
est essentiellement combinatoire !)
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gamètes de p1

{a1}
{a2}
{a3}

{a1, a2}
{a1, a3}
{a2, a3}
1x/2x

1
6

gamètes de p2

{b1}
{b2}
{b3}

{b1, b2}
{b1, b3}
{b2, b3}
1x/2x

1
6

croisement−−−−−−−−−→

génotypes de e

{a1, b1}
|

9 en tout
|

{a3, b3}
{a1, b1, b2}

|
18 en tout

|
{a2, a3, b3}

{a1, a2, b1, b2}
|

9 en tout
|

{a2, a3, b2, b3}
2x/3x/4x

1
36

Figure 3.4 – Schémas de reproduction associés à une relation de la forme (p1, p2) 7→ e où
les parents p1 et p2 sont triplöıdes de génotypes {a1, a2, a3} et {b1, b2, b3}, respectivement.

La seconde difficulté réside dans le fait que certaines données génotypiques ne sont
pas connues avec certitude en présence de tri- ou tétraplöıdie, en raison de la méthode de
détection des allèles qui se fait par lecture de signaux en présence/absence. Un triplöıde
donnant lieu à un signal avec 2 pics en a et en b est soit {a, a, b}, soit {a, b, b}, et il
en va de même lorsqu’un tétraplöıde laisse apparâıtre 2 ou 3 pics. L’exemple donné sur
la Figure 3.6 est issu du jeu de données, l’individu en question est tétraplöıde et 2 pics
sont détectés (132 et 161), ce qui signifie que son génotype à cet emplacement peut être
aussi bien {132, 132, 132, 161} que {132, 132, 161, 161} ou que {132, 161, 161, 161}. Tenant
compte de ces phénomènes, on évalue la probabilité d’une relation (p1, p2) 7→ e sur la base
de m marqueurs par

δ(e, p1, p2) =
m∏

s=1

∑

G∈Gs

P({(p1, p2) 7→ e} |G)P(G) (3.5)

où Gs est l’ensemble des génotypes possibles sur le signal s pour le triplet (e, p1, p2) et P(G)
est la probabilité que l’on attribue à un génotypeG ∈ Gs (qui reste source d’interrogations,
comme on le verra dans les perspectives), alors que P({(p1, p2) 7→ e} |G) découle du
modèle retenu pour les croisements (l’indépendance supposée entre les signaux est justifiée
par une analyse statistique préalable dans laquelle on décorrèle les observations). Après
renormalisation, on construit pour chaque individu une mesure de probabilité portée
par l’ensemble des couples de P et quantifiant les liens de parenté directe potentiels.
Cela permet en particulier de bâtir l’arbre généalogique le plus probable au sein de la
population, à l’image de l’exemple proposé sur la Figure 3.5.
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Figure 3.5 – Exemple de reconstruction de généalogies par maximum de vraisemblance.
Les couleurs caractérisent la fiabilité des informations représentées.

Notre étude propose également une estimation de la loi de reproduction de chaque in-
dividu, c’est-à-dire du nombre d’enfants pour lesquels il est directement impliqué, en
considérant l’information issue de toutes les généalogiques potentielles (et pas seule-
ment celle de plus grande probabilité). Cette caractéristique est très importante du
point de vue biologique car dans des populations entretenues, elle permet de comprendre
rétrospectivement les variétés qui ont été favorisées comme géniteurs par les sélectionneurs
en repérant les comportements atypiques. Enfin, un algorithme de recherche des châınons
manquants est mis en place afin de tenter de retrouver le génotype d’individus non ob-
servés mais vraisemblablement actifs par le passé. Nous sommes pour cela amenés à des
considérations techniques justifiant la nécessité de définir un critère pénalisé pour décider
si un individu apporte une information significative à la généalogie, à travers ce que l’on
définit comme son potentiel d’interaction.

Perspectives

Le point d’amélioration qui ressort le plus souvent de ce travail, et qui par ailleurs est
une piste de recherche active dans ce domaine particulier de la biologie végétale, porte sur
le dosage allélique, c’est-à-dire sur l’évaluation de la probabilité P(G) dans (3.5). Il existe
des arguments de nature purement technique pour affirmer que l’amplitude des pics sur
les signaux n’est pas suffisante pour décider avec certitude qu’un allèle est plus présent
qu’un autre. Repensons à l’exemple déjà évoqué et caractéristique de cette situation
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ambiguë : un tétraplöıde dont l’étude en présence/absence révèle la présence des allèles a
et b pourrait assez naturellement se voir attribuer le génotype {a, b, b, b} si le pic en b est
trois fois plus grand que le pic en a, comme sur la Figure 3.6 ci-dessous issu des données
réelles.

Figure 3.6 – Exemple de signal pour un marqueur microsatellite particulier donnant
lieu à la détection de 2 pics (allèles 132 et 161) pour un individu tétraplöıde.

Des études sont en cours, on propose en particulier de déterminer les probabilités
de dosage par une agrégation de l’estimation obtenue de manière purement matérielle
(par lecture des signaux) avec celle obtenue de manière purement génétique (rapport des
allèles dans une population en équilibre). La piste est très prometteuse mais elle bute
encore sur un obstacle de taille : l’absence d’échantillon de validation. Par ailleurs, nous
avons retenu en première analyse le modèle le plus intuitif concernant la reproduction
(uniformité généralisée) mais selon les experts biologistes, certaines incongruités peuvent
survenir dans le monde végétal : l’appariement préférentiel, la double réduction, l’infer-
tilité potentielle des triplöıdes (bien que sélectionnés et favorisés... pour leur rareté !),
etc. En bref, il pourrait être intéressant de développer des schémas de reproduction
plus généraux, ce qui ne semble pas une tâche compliquée d’un point de vue concep-
tuel bien que nécessitant l’introduction de nouveaux paramètres d’ajustement. L’algo-
rithme de recherche des châınons manquants est de type ‘glouton’ (exploratoire) et en
ce sens très coûteux en temps de calcul, là encore des pistes d’améliorations pourraient
être creusées. Sous l’angle de vue probabiliste, une telle étude renvoie immédiatement à
des problématiques plus ambitieuses comme les équilibres d’Hardy-Weinberg ou encore
la coalescence. À ce sujet, on sait finalement assez peu de choses dans les populations
tétraplöıdes en dehors de l’étude de Arnold et al. (2012) et beaucoup de points restent
à éclaircir. Pour conclure, permettons-nous de citer l’intervenant biologiste principal (J.
Clotault) : sur un échantillon de rosiers 2x, 3x et 4x pourtant choisis pour être assez dis-
tants génétiquement et apparus tout au long du XIXe siècle, l’application de la méthode
KING (Manichaikul et al. (2010)) de calcul d’apparentement, dans le sens évoqué plus
haut, suggère de façon surprenante un apparentement fort entre la plupart de ces rosiers
et il serait très intéressant de pouvoir valider (ou non...) les résultats de cette méthode
avec une méthode plus fiable, basée sur les lois de l’hérédité, comme la nôtre. L’étude est
en cours.
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PROBABILISTIC RECONSTRUCTION OF GENEALOGIES FOR
POLYPLOID PLANT SPECIES

PROÏA FRÉDÉRIC, PANLOUP FABIEN, TRABELSI CHIRAZ, AND CLOTAULT JÉRÉMY

Abstract. A probabilistic reconstruction of genealogies in a polyploid population (from
2x to 4x) is investigated, by considering genetic data analyzed as the probability of allele
presence in a given genotype. Based on the likelihood of all possible crossbreeding patterns,
our model enables us to infer and to quantify the whole potential genealogies in the pop-
ulation. We explain in particular how to deal with the uncertain allelic multiplicity that
may occur with polyploids. Then we build an ad hoc penalized likelihood to compare ge-
nealogies and to decide whether a particular individual brings sufficient information to be
included in the taken genealogy. This decision criterion enables us in a next part to suggest
a greedy algorithm in order to explore missing links and to rebuild some connections in the
genealogies, retrospectively. As a by-product, we also give a way to infer the individuals
that may have been favored by breeders over the years. In the last part we highlight the
results given by our model and our algorithm, firstly on a simulated population and then on
a real population of rose bushes. Most of the methodology relies on the maximum likelihood
principle and on graph theory.

1. Introduction

1.1. Motivations. Pedigrees depict the genealogical relationships between individuals of a
given population. They can be built thanks to mating knowledge or they can be inferred from
molecular markers. The identification of pedigrees allows a broad variety of applications:
genealogy identification, like in grapevine [12], improvement of conservation programs for
endangered species [14], inference of statistics used in quantitative and population genetics
like heritability or population effective size [1, 10], etc. Like for most population genetics
analyses, pedigree reconstruction methods and their implementation were firstly developed
for diploid species (but see [21]). Polyploids, i.e. species with more than two alleles for
a given locus, represent approximately 25% of plant species [2], and among them a large
number of cultivated species. Polyploidy in animals is more rare but some examples were
described in insects, fishes, amphibians and reptiles [18, 15].

Several strategies were used to reconstruct the genealogical relationships from molecular
markers (reviewed in [9]). Exclusion methods eliminate potential parents which do not show
at least one allele per locus shared with a putative offspring. If more than two parents
are possible, categorical allocation methods allow identification of the most likely parents
according to their probability to transmit alleles shared with the potential progeny. Parental
reconstruction methods use full- or half-siblings in order to identify the most likely parents.
By comparison, sibling reconstruction methods add a preliminary step of inference of siblings
when they are unknown. In this paper, the objective is to adapt and to extend the approach

Key words and phrases. Allelic multiplicity, Crossbreeding patterns, Genealogies of plant species, Graph
theory, Maximum likelihood principle, Missing links, Pedigree reconstruction, Polyploid population.
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of [4], namely to determine for each individual the most likely couple of parents amongst
all older individuals, so as to build some family trees in polyploid plant species. Our study
certainly intends to be applied on real genetic datasets, in particular the main practical
motivation is to find some retrospective links in a population of rose bushes that will now
be described.

The empirical dataset used in the last section of this article was obtained on cultivated
roses bred mainly during the nineteenth century (Rosa sp.). Rose breeding activities were
particularly abundant during the nineteenth century and were very documented. As an
example, breeding year is known for a majority of roses from this period. However, the
genealogical relationships described in archives are highly hypothetical, due to the lack
of control of artificial hybridization until the end of the nineteenth century. Among the
approximately 200 species of the genus Rosa, ploidy level varies between 2x and 10x [8].
Rose breeding activities from the nineteenth century involved interspecific crossings between
diploid species and tetraploid species, with a small contribution of genotypes with higher
ploidy like species from the Caninae section (4x, 5x and 6x) [17, 13]. Cultivated roses bred
during the nineteenth century can exhibit all ploidy values between 2x and 6x, even if 5x and
6x are rare [13]. The mode of inheritance in these rose cultivars remains highly unknown. It
is generally considered that modern tetraploid cultivated roses exhibit a tetrasomic inheri-
tance (no preferred pairing among the set of four homologous chromosomes and creation of
tetravalents during meiosis) [11]. But a mixture of disomic (preferred pairing of two biva-
lent pairs during meiosis according to their genomic similarity) and tetrasomic inheritance
could be observed according to chromosomes and according to genotypes [3]. Triploid roses
have played a major role in rose hybridizations. Like in other species, triploid roses exhibit
a low fertility rate, due to irregular meiosis leading to aneuploidy [16]. However, even if
the production of fertile gametes from triploids remains rare, these events were selected by
breeders, especially as bridges between different ploidy levels. For example, Bourbon, Hy-
brid China and Hybrid Tea rose groups were both obtained by a cross between a Chinese
diploid cultivar and a European tetraploid cultivar. First cultivars from these groups were
triploid [7]. Triploids form both haploid and diploid gametes [20]. Following the obtention
of a variety by hybridization, it was then propagated vegetatively by cutting or grafting
and often conserved in rose gardens. Therefore rose varieties can be considered as immortal
and they could have been involved at different periods in rose pedigrees. As most of plants,
roses are hermaphrodites and can therefore have been used as female or male on different
hybridization events. Selfing rate in roses is very low mainly because of self-incompatibility
([19] and J. Mouchotte, pers. comm.). These specific breeding behaviors are the cornerstone
of our probabilistic model.

In a general way, the polyploidy of the population may give rise to complications in terms
of multiplicity of the alleles, being only aware of their presence or absence: that will be one
of our strategic challenges to deal with this lack of information, widely discussed throughout
the manuscript. Whereas for diploids the presence or absence of alleles is sufficient – for
{a} and {a, b} undoubtedly correspond to {a, a} and {a, b} – the observation of {a, b} for
a tetraploid can correspond to {a, a, a, b}, {a, a, b, b} or {a, b, b, b}. Reading the presence
or absence of alleles on electrophoregrams and interpreting theoretical ratios between peak
intensities is an option to determine the number of copies of each allele [6]. Unfortunately,
we will explain in good time the reasons why this strategy is not reliable in our context and
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we will introduce a way to deal with this allelic multiplicity through the intermediary of
probabilities related to each configuration. Before getting to the heart of the matter, let us
point out that the objective of this work is not to introduce a biological issue, but rather to
build and justify the more realistic mathematical framework regarding the biological model
of roses bred during the nineteenth century. This work is above all a methodological one.

The paper is organized as follows. In Section 2, we present a probabilistic method in order
to reconstruct genealogies for species with several ploidy levels, from 2x to 4x, by considering
genetic data analyzed as the probability of allele presence in a given genotype. In particular,
we compute the likelihood associated with all crossbreeding patterns and we explain how
to build and quantify the whole possible genealogies of the population and how to treat
the unknown allelic multiplicity. As a by-product we also give a way to find the individuals
favored by breeders, retrospectively. Section 3 treats the isolated individuals, more precisely,
the missing links. Under some criteria, we suggest an algorithm computing virtual individuals
to improve the genealogy. Whereas Sections 2 and 3 are mainly theoretical, all our results will
be tested in Section 4, both on a simulated population and on a rose bushes population. We
conclude by highlighting some weaknesses of our methodology and by giving, in accordance,
some trails for future studies.

1.2. Preliminary considerations and notations. In the whole paper, P stands for the
population of size n = Card(P) and m is the number of genes involved in the reconstruction
process. Technically, m corresponds to the number of signals on which we read the peaks,
expressing the set of alleles detected on each gene. We make the crucial hypothesis that
signals are mutually independent, which can be argued on a genetic as well as statistical
point of view (genes are chosen for their absence of known interaction and a prior statistical
treatment tends to decorrelate them by eliminating material-type influences). For an indi-
vidual e ∈ P , we denote by gs(e) the genotype of gene s, that is, the set of alleles present
for this gene, shortened in g(e) when we deal with an unspecified gene (to be precise, we
should in fact speak of multiset since we may have multiple instances of the same allele in
the genotype, however we shall not make these kind of distinctions). We also denote by
x(e) = Card(g(e)) ∈ {2, 3, 4} the ploidy of e, the number of sets of chromosomes in a cell. In
addition, we assume that the birth dates are known and that no death occurs, which is con-
sistent with the fact that the work is related to plant cultivars. We also assume that gametes
are produced according to strict polysomic inheritance and we neglect double reduction.

2. Likelihood of a genealogy

This section is the heart of the paper. Firstly we will describe the genetic patterns that
we retain to cross the polyploid individuals, and we will discuss the probabilistic treatment
of the allelic multiplicity that may appear for triploids and tetraploids. Thereafter, we will
be in the position to estimate some retrospective links and to compute an ad hoc penalized
likelihood for the genealogy. Before anything else, let us begin with a formal description of
what we mean by genealogy and likelihood. A genealogy is an element of the set

(2.1) Υ(P) =
∏

e∈P

{
T(e) ∪ (e, ∅)

}
where T(e) =

⋃

s∈S(e)

(e, s)

and where S(e), as will be detailed in good time (see beginning of Subsection 2.3), is the
set of non-ordered pairs candidates to the genealogy of e. In concrete terms, an individual
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e is associated with each couple of possible parents S(e) together with ∅, to cover the case
where T(e) = ∅, that is where no triplet offspring/couple of parents can be found in the
population for e. Thus, a genealogy T on P = {e1, . . . , en} takes the form of

(2.2) T =
{

(e1, s1), (e2, s2), . . . , (en, sn)
}

in which si is either an element of S(ei), either ∅. It has clearly a structure of graph, as
will be explained later. Now, looking at T as the realization of a discrete random vector
taking values in the set Υ(P), it naturally follows that the likelihood of a genealogy is the
probability that it has to be observed, in accordance with the statistical usual definition,
given a model and a set of hypotheses that will be described in this section. It should also
be noted that a maximum likelihood genealogy, as will be largely discussed later, is not an
estimator in the statistical sense, but the value of T ∈ Υ(P) having the biggest probability,
with respect to the model.

2.1. Crossbreeding patterns. To simplify the combinatorial analysis, we use the follow-
ing natural models. Diploids produce haploid gametes, genotype {a, b} leads to gametes
{a} and {b} with probability 1. Triploids produce haploid and diploid gametes, genotype
{a, b, c} leads to gametes {a} and {b, c} with probability 1

3
, gametes {b} and {a, c} with

probability 1
3

and gametes {c} and {a, b} with probability 1
3
. Tetraploids produce diploid

gametes, genotype {a, b, c, d} leads to gametes {a, b} and {c, d} with probability 1
3
, gametes

{a, c} and {b, d} with probability 1
3

and gametes {a, d} and {b, c} with probability 1
3
. In

addition, each individual can either be male or female, the set of gametes is treated as an
urn problem. Crossing is made by choosing at random two gametes among all these possibil-
ities, bringing them together to obtain the offspring’s genotype. Figures 1–2–3 are schematic
representations of the gametes production, indicated by arrows, of a parent cell.

Figure 1. Schematic representation of the gametes production (in the bot-
tom) for a diploid cell (in the top). Symbols represent the alleles of a given
gene on its chromosome (line).

Let p1 and p2 be two individuals having ploidies x(p1) and x(p2) with genotypes g(p1) =
{a1, . . . , ax(p1)} and g(p2) = {b1, . . . , bx(p2)}, respectively. In the sequel, p1 and p2 are the
parents of the offspring e. The different ploidy levels lead to six patterns that we are now
going to describe in detail.

(P1) x(p1) = x(p2) = 2. Let g(p1) = {a1, a2} and g(p2) = {b1, b2}. Then, e has 4 potential
diploid genotypes g(e) = {ai, bk}, for i, k ∈ {1, 2}. Each one has probability 1

4
.
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Figure 2. Schematic representation of the gametes production (in the bot-
tom) for a triploid cell (in the top). Symbols represent the alleles of a given
gene on its chromosome (line).

Figure 3. Schematic representation of the gametes production (in the bot-
tom) for a tetraploid cell (in the top). Symbols represent the alleles of a given
gene on its chromosome (line).

(P2) x(p1) = 2 and x(p2) = 3. Let g(p1) = {a1, a2} and g(p2) = {b1, b2, b3}. Then, e
has 6 potential diploid genotypes g(e) = {ai, bk}, and 6 potential triploid genotypes
g(e) = {ai, bk, b`}, for i ∈ {1, 2} and k, ` ∈ {1, 2, 3}. Each one has probability 1

12
.

(P3) x(p1) = 2 and x(p2) = 4. Let g(p1) = {a1, a2} and g(p2) = {b1, b2, b3, b4}. Then, e has
12 potential triploid genotypes g(e) = {ai, bk, b`}, for i ∈ {1, 2} and k, ` ∈ {1, 2, 3, 4}.
Each one has probability 1

12
.

(P4) x(p1) = x(p2) = 3. Let g(p1) = {a1, a2, a3} and g(p2) = {b1, b2, b3}. Then, e has 9 poten-
tial diploid genotypes g(e) = {ai, bk}, 18 potential triploid genotypes g(e) = {ai, bk, b`}
or g(e) = {ai, aj, bk}, and 9 potential tetraploid genotypes g(e) = {ai, aj, bk, b`}, for
i, j, k, ` ∈ {1, 2, 3}. Each one has probability 1

36
.

(P5) x(p1) = 3 and x(p2) = 4. Let g(p1) = {a1, a2, a3} and g(p2) = {b1, b2, b3, b4}. Then,
e has 18 potential triploid genotypes g(e) = {ai, bk, b`}, and 18 potential tetraploid
genotypes g(e) = {ai, aj, bk, b`}, for i, j ∈ {1, 2, 3} and k, ` ∈ {1, 2, 3, 4}. Each one has
probability 1

36
.
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(P6) x(p1) = x(p2) = 4. Let g(p1) = {a1, a2, a3, a4} and g(p2) = {b1, b2, b3, b4}. Then, e has
36 potential tetraploid genotypes g(e) = {ai, aj, bk, b`}, for i, j, k, ` ∈ {1, 2, 3, 4}. Each
one has probability 1

36
.

To sum up, all diploid offsprings may come from patterns (P1)–(P2)–(P4), all triploid
offsprings from patterns (P2)–(P3)–(P4)–(P5) and all tetraploid offsprings from patterns
(P4)–(P5)–(P6). One can remark that the trickiest case is probably (P4) since three different
ploidies can be generated by crossing triploids, Figure 4 gives a streamlined representation
of it. Now let {(p1, p2) 7→ e} be the event through which the pair (p1, p2) conceives e, let u

Figure 4. Schematic representation of pattern (P4) leading to u = 36 po-
tential offsprings including 9 diploids, 18 triploids and 9 tetraploids. Symbols
represent the alleles of a given gene.

denote the maximum number of different genotypes generated by the pattern (u = 4, u = 12
or u = 36) corresponding to the ploidy of p1 and p2, and let e1, . . . , eu name the potential
offsprings of the cross. Our hypotheses show that, conditionally on the knowledge of the
genotypes of the parents, each offspring is drawn through a uniform distribution. So, we set

(2.3) P({(p1, p2) 7→ e} | {g(p1), g(p2), g(e)}) =
1

u

u∑

r=1

1{er = e}

where the genetic equality er = e means that g(er) and g(e) coincide in a sense that we have
to define. Specifically, we consider that er = e once

(2.4) g(er) = g(e) and hence x(er) = x(e)

which in this case amounts to say that er and e have the same ploidy and the same set of
alleles (we remind that x = Card(g)). However, it is important to highlight that (2.4) is
only relevant from theoretical perspectives or on simulated data. We will see in Section 4.2
that real genotypes result from a calibration of the equipment and some rounded values to
be interpreted as base pairs. Therefore,

(2.5) x(er) = x(e) and ‖g∗(er)− g∗(e)‖∞ 6 1
6
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where g∗ stands for an ascending sorted vector containing the elements of g, should be an
appropriate comparison on such data. Indeed, this criterion allows an offset of ±1 base pairs
for two corresponding alleles.

Examples. To illustrate this calculation method, let us consider g(p1) = {a, a} and g(p2) =
{a, b}. Then u = 4, the potential offsprings have genotypes g(e1) = g(e3) = {a, a} and
g(e2) = g(e4) = {a, b}. For g(e) = {a, a} or g(e) = {a, b}, formula (2.3) gives probability
1
2
. It also gives probability 0 for all other genotypes. In the more intricate case where
g(p1) = {a, a, b, c} and g(p2) = {a, c, c}, then u = 36 and among the potential offsprings,
5 will have genotype g(e) = {a, b, c}. Formula (2.3) gives probability 5

36
for such a triploid

offspring.

2.2. Allelic multiplicity. For an individual e ∈ P , the set g(e) is the true genotype. How-
ever in our experimental studies, we only observe a partial genotype ĝ(e) ⊂ g(e) containing
the distinct alleles – a set of peaks on the signal. Taking advantage of the ploidy x(e), one is
able to infer all possible g(e) from ĝ(e). Explicitly, we use the following connections, where
π names a probability of multiplicity in a generic way.

(C1) ĝ(e) = {a} and x(e) = 2 leads to g(e) = {a, a} with probability 1.
(C2) ĝ(e) = {a, b} and x(e) = 2 leads to g(e) = {a, b} with probability 1.
(C3) ĝ(e) = {a} and x(e) = 3 leads to g(e) = {a, a, a} with probability 1.
(C4) ĝ(e) = {a, b} and x(e) = 3 leads to g(e) = {a, a, b} with probability π21 and to g(e) =

{a, b, b} with probability π12. We set π21 + π12 = 1.
(C5) ĝ(e) = {a, b, c} and x(e) = 3 leads to g(e) = {a, b, c} with probability 1.
(C6) ĝ(e) = {a} and x(e) = 4 leads to g(e) = {a, a, a, a} with probability 1.
(C7) ĝ(e) = {a, b} and x(e) = 4 leads to g(e) = {a, a, a, b} with probability π31, g(e) =

{a, a, b, b} with probability π22 and g(e) = {a, b, b, b} with probability π13. We set
π31 + π22 + π13 = 1.

(C8) ĝ(e) = {a, b, c} and x(e) = 4 leads to g(e) = {a, a, b, c} with probability π211, g(e) =
{a, b, b, c} with probability π121 and g(e) = {a, b, c, c} with probability π112. We set
π211 + π121 + π112 = 1.

(C9) ĝ(e) = {a, b, c, d} and x(e) = 4 leads to g(e) = {a, b, c, d} with probability 1.

Instead of selecting a genotype for e when several are conceivable, that is, for combina-
tions (C4)–(C7)–(C8), the model that we introduce in the next section takes account of all
possibilities weighted by their related probabilities. In fact, our model enables us to choose
if necessary π = π(s) gene by gene or, equivalently, signal by signal, to consider the different
interpretations of the relative amplitude of the peaks on each signal, for material reasons.
We will describe it in more details in the beginning of Section 4.2.

2.3. Probability of a genealogical link. For any individual e ∈ P , as it has been outlined
in the introduction of the section, let S(e) ⊂ P 2 be the compatible subpopulation, that is,
the set of non-ordered pairs (p1, p2) with p1 6= p2 (excluding selfing) genetically and chrono-
logically candidates to the genealogy of e. It is worth noting that the only chronological
constraint is obviously to consider that birth dates of descendants cannot be prior to the
ones of their parents. In particular, the probabilities of ancestry are considered as time-
invariant : any individual has the same probability of being a parent, regardless of its birth
date, excluding de facto any generational model like Galton-Watson trees. This point of view
is specific to plant species, and would clearly be irrelevant for animal populations. Whether
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the individual was obtained during the decade preceding the birth date of the offspring, or
several centuries ago, because of the immortality and constant fertility given by a vegetative
propagation, we assume that the probability of ancestry is the same. Our objective is to
build a probability measure on S(e) ∪ {∅} quantifying the whole possible genealogical links
of e, the element ∅ being added to cover the case where no parents can be found in the
population. The hypothesis of mutual independence of the signals allows us to work on each
signal and to multiply the results. Let

(2.6) δ(e, p1, p2) =
m∏

s=1

∑

G∈Gs
P({(p1, p2) 7→ e} |G)P(G)

where Gs is the set of all possible genotypes on signal s for the triplet (e, p1, p2). In the best-
case scenario, Card(Gs) = 1 which means that ĝs(p1), ĝs(p2) and ĝs(e) lead to no uncertain
allelic multiplicity, and thus P(G) = 1. At worst, Card(Gs) = 27 meaning that ĝs(p1),
ĝs(p2) and ĝs(e) are in the situation (C7) or (C8), and P(G) is the product of the related
probabilities.

Example. Suppose that x(p1) = 3, x(p2) = 4, x(e) = 4 and that, on a particular signal s, we
observe ĝs(p1) = {a, b}, ĝs(p2) = {a, c, d} and ĝs(e) = {a, d}. Then, Card(Gs) = 18. Indeed,
we build Gs by combining {a, a, b} and {a, b, b} for p1, {a, a, c, d}, {a, c, c, d} and {a, c, d, d}
for p2, and {a, a, a, d}, {a, a, d, d} and {a, d, d, d} for e. For the first combination we have

P(G) = π
(s)
21 π

(s)
211 π

(s)
31 , for the second one P(G) = π

(s)
21 π

(s)
211 π

(s)
22 , and so on.

It only remains to renormalize. Explicitly, with

(2.7) ∆(e) =
∑

(p1,p2)∈S(e)

δ(e, p1, p2)

where δ(e, p1, p2) is given in (2.6), let

(2.8) ∀ (p1, p2) ∈ S(e), νe((p1, p2)) =

{ δ(e,p1,p2)
∆(e)

if ∆(e) > 0

0 otherwise

and fix νe(∅) = 1 as soon as ∆(e) = 0, and νe(∅) = 0 otherwise. Then clearly, νe :
S(e) ∪ {∅} → [0, 1] is a probability measure that can be applied to look for the whole
genealogy of e ∈ P . To build the most likely genealogy, we must pick

(2.9) c ∗(e) = arg max
c∈S(e)∪{∅}

νe(c).

To be precise, c ∗(e) defined as above is not necessarily unique, in such case we arbitrarily
pick one optimum at random. We will see in the sequel that choosing a genealogical link
amongst others is not necessarily relevant, hence we also consider

(2.10) G(e) = {c ∈ S(e) ∪ {∅} | νe(c) > 0}
which represents the whole potential genealogical links of e in our population P .

2.4. A retrospective family tree. Now the objective is to compute G(e) – and thus c ∗(e)
– for all e ∈ P . In the framework of this study, a family tree T of the population P is a set
of triplets (e, p1, p2) having probabilities νe((p1, p2)) > 0, on the basis of m genes, such that
there is at most one triplet (e, p1, p2) for any individual e, interpretable as the realization of
the event {(p1, p2) 7→ e}, taking up the notation of the previous sections. We also require
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that a triplet (e, p1, p2) is assigned to the node e of the family tree as soon as c ∗(e) 6= ∅,
that is as soon as there exists at least one potential genealogical link for e. To make the
connection with our formal introduction, a family tree T completed by (e,∅) for each e such
that c ∗(e) = ∅ is merely a genealogy as it is defined in (2.2). In an equivalent way, we build
a graph in which each individual is a vertex and each genealogical link is a couple of arcs
(from the parents to the offspring). Note that the chronological constraint applied on S(e)
is sufficient to ensure that no cycle is present in the graph. The methods and algorithms
that follow will be tested and applied in Section 4.

2.4.1. Most likely trees. Combining all options of G(e) for each e ∈ P gives an exhaustive
set of trees, all potential genealogies of the population that we will denote as G(P) in
(2.13). However, on large datasets, this can be difficult due to the exponential growth of the
combinations. Thus we look for criteria of selection, and first we define the log-likelihood of
a family tree T as follows,

(2.11) `(T ) =
∑

(e,p1,p2)∈T
ln νe((p1, p2)).

Note that this expression corresponds to the likelihood of a genealogy as we have defined
it beforehand, under the crucial hypothesis that each triplet offspring/couple of parents is
independent of any other, which once again is specific to plant species. Clearly P can be
divided into L = {e ∈ P | c ∗(e) 6= ∅} and I = {e ∈ P | c ∗(e) = ∅}, respectively the
individuals having potential ancestors in the population, present as nodes in all family trees
built according to our constraints, and the ones for which we have not been able to find any
genealogical link, that we will describe as isolated. Our model guarantees that maximizing
`(T ) amounts to locally maximizing the log-probability of each link. To sum up,

(2.12) max
T ∈Υ(P)

`(T ) =
∑

e∈L
ln νe(c

∗(e))

and this upper bound is reached by the tree T ∗ built on all e ∈ L associated with the
pairs c ∗(e). We shall note that formula (2.12) does not necessarily highlight a unique family
tree, for some pairs (p1, p2) may have the same probability of producing e. In this case, the
maximization problem has more than one solution.

2.4.2. Number of offsprings. Suppose now that the population is small enough to be able to
compute

(2.13) G(P) =
∏

e∈P
G(e)

where G(e) is given in (2.10). Namely, G(P) contains the exhaustive set of potential genealo-
gies of the population. Due to the combination of the options of all G(e), Card(G(P)) may
be very large. In fact such a Cartesian product is only conceptual, but quickly intractable
for practical purposes leading to combinatorial explosions. Therefore, a threshold probability
must be used to select the genealogies of G(P). Concretely, we can replace the definition of
G(e) in (2.10) by the more stringent

(2.14) G(e) = {c ∈ S(e) ∪ {∅} | νe(c) > πmin}
for a given choice of 0 6 πmin < 1, and the construction of G(P) accordingly. If we define
N(i) as a random variable counting the offsprings of i ∈ P , then it could be interesting to
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give an estimation of its probability distribution so as to infer, retrospectively, the individuals
favored by breeders. Our model directly suggests to use

(2.15) ∀ k ∈ N, P̂(N(i) = k) =
∑

g ∈G(P)

wg 1{ng(i) = k}

where ng(i) is the number of offsprings of i in the genealogy g and wg is a weighting of the
genealogy that can naturally be defined as the ratio between its likelihood and the sum of
all likelihoods, i.e.

(2.16) wg =
e `(g)

L(P)
with L(P) =

∑

h∈G(P)

e `(h)

keeping the notation of (2.11). It follows that

(2.17) Ê[N(i)] =
∑

g ∈G(P)

wg ng(i)

may be a useful tool to decide whether i has been favored by breeders, by comparison with
the global mean value and a classical outlier threshold. This approach will be illustrated on
the rose bushes population of Section 4.2.

Example. Consider a set of 4 genealogies of likelihood 0.8, 0.6, 0.1 and 0.02, among which
an individual i has 0, 1, 1 and 2 offsprings, respectively. Then we propose estimating

P̂(N(i) = 0) ≈ 0.526, P̂(N(i) = 1) ≈ 0.461, P̂(N(i) = 2) ≈ 0.013 and P̂(N(i) > 2) = 0. For

this individual, Ê[N(i)] ≈ 0.487.

To look at pairwise relationships in the population, it can also be meaningful to build
a genealogical graph made of all possible (weighted) links. In such a graph, we are not
interested in the triplets offspring/couple of parents, but only in the pairs offspring/parent.
For all (i, j) ∈ P 2 and the same weights as in (2.16), consider

(2.18) Wi→ j =
∑

g ∈G(P)

wg 1{(i→ j)∈ g}

where {(i → j) ∈ g} means that i is a parent of j in the genealogy g. The directed and
weighted graph built on Wi→ j amounts to the superposition of all genealogies except that
the viewpoint is different: edges are not considered in pairs, but each one has a role of
its own. However it is worth noting that, according to this model, the outflow from an
individual is precisely its averaged number of offsprings (2.17). Thus, these two approaches
are numerically equivalent but they differ from the interpretation.

2.4.3. Comparison of trees. For a fixed population of size n, since each tree contains the same
number of links, maximizing the likelihood via (2.11) seems a suitable criterion. However,
it cannot be trusted to compare trees with a different number of links. To understand this,
let Pi = P ∪ {i} be the same population enhanced with a new individual, from the last
generation, such that δ(i, p1, p2) > 0 for at least two pairs (p1, p2) ∈ S(i). Then, for these
pairs we get ln νi((p1, p2)) < 0, implying that `(T ) > `(Ti), where T and Ti are the family
trees maximizing the likelihood on P and Pi, respectively. In other words, this criterion
favors T rather than Ti whereas there exists a link between some individuals of P and i. In
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order to overcome this negative impact, as soon as we have to compare family trees on two
populations P and Pi such that Pi = P ∪ {i}, we suggest to consider a trade-off like

(2.19) ` ∗(Ti) = `(Ti) + Ψ(i)

where `(Ti) is the log-likelihood given by (2.11) of the genealogical tree Ti on Pi containing
i, and Ψ(i) is a measure of the interaction ability of the new individual i with P . Whence,
to decide whether i has to be added into the genealogy, it will be possible to compare ` ∗(Ti)
and `(T ) for the most likely tree T built on P , provided a suitable adjustment of Ψ(i).
In this way, we intend to compensate the mechanical decrease of the log-likelihood due to
the accumulation of potential links including i. This penalization of the log-likelihood is a
strategy similar to the well-known AIC and BIC criteria. In the next section, when looking
for missing individuals that could improve the family tree, we will see how to give a suitable
explicit form to Ψ according to our purposes.

3. Missing links

Recall that our model assumes that no death occurs, which, as we have seen, is consistent
with the fact that the work is related to perennial plant cultivars with asexual multiplica-
tion. However, individuals are obviously missing in the population – because they represent
intermediate individuals never recorded as a cultivar and never distributed by the breeder,
because the cultivar disappeared from rose gardens deliberately or accidentally, or because it
was not sampled in the study. In this section, our objective is to look for some missing links.
Since we do not know exactly how many individuals are missing, our strategy is to launch
a greedy algorithm that explores the population and tries to detect an excess of information
that might improve substantially the genealogy. The combinatorial complexity leads us to
focus on some particular areas for the algorithm. More precisely, it seems that the isolated
individuals are suitable starting points, for which we recall that I = {e ∈ P | c ∗(e) = ∅}
is the set of individuals having no parents in the most likely genealogy. For all e ∈ I, let
R(e) ⊂ P be the individuals in the population chronologically candidates to the genealogy of
e and able to produce a gamete compatible with e. In addition, for each p ∈ R(e), consider

(3.1) i∗(e, p) = arg max
i

δ(e, p, i)

as it is defined in (2.6), where i has the structure of an individual of the population (with
a ploidy, a date of birth and a set of alleles for each signal). Namely, i∗(e, p) is a virtual
individual having a genotype which maximizes the probability of the event {(p, i) 7→ e}, it can
be seen as the “perfect partner” of p to produce e. Given i = i∗(e, p), we now have to decide
whether i significantly improves the genealogy. Let us carry on with the criterion introduced
in (2.19), where the enhanced population is Pi = P ∪ {i}. To match with our study, the
penalization Ψ(i) must favor individuals i providing the maximum number of interactions
with P . As we have seen in the last section, few interactions leave the likelihood almost
unchanged whereas too many interactions tend to depreciate it, this was our motivation to
look for a trade-off. We also want to give priority to any individual i reducing the number of
connected components in the genealogy – that is, the number of subgraphs in which all nodes
are connected. Indeed, in view of our fundamental hypothesis that, except for ancestors, all
parents should be present in an ideal population, we know that if we were able to access
to the whole population, it would lead to a graph with few connected components (less
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than the number of ancestors, in any case). In this context, it seems natural to favor the
reduction of the number of connected components, in order to get closer of this true (but
inaccessible) genealogy. Define T and Ti as the maximum likelihood trees on P and Pi,
respectively, and suppose that i is contained in Ti. Combining these requirements, we can
write the penalization in the form

(3.2) Ψ(i) = λi
r(i)

n
− µi ∆C(i)

where r(i) is the number of individuals of P potentially interacting with i, ∆C(i) is the
difference between the number of connected components in T and Ti, λi > 0 and µi > 0
are regularization parameters. Our decision rule consists in keeping an individual i which
satisfies ` ∗(Ti) > `(T ). We can formalize r(i) like

r(i) =
∑

p∈P
η(i, p)

where η(i, p) = 1 if one can find a ∈ P such that δ(i, a, p) > 0, δ(a, i, p) > 0 or δ(p, a, i) > 0,
that is, if there is a nonzero probability for at least a link involving p and i, and η(i, p) = 0
otherwise. Note that a may be an offspring of i as well as a parent or a partner of i to be
considered as an interaction involving i. To adapt our criterion, we can choose

(3.3) λi =
n

2
|`(T )− `(Ti)|

since this guarantees that ` ∗(Ti) = `(T ) when the new individual does not bring any con-
nection except the one for which it has been created, not gathering connected components
(r(i) = 2 and ∆C(i) = 0), and thus when i should be rejected. A similar strategy enables us
to fix µi, for r(i) = 2 must at least coincide with ∆C(i) = −1 to make an interesting link.
This is the case when i has been created to fulfill the event {(p, i) 7→ e}, and when p and e
belong to different connected components. Of course that situation must be favored, and to
simplify one can choose

(3.4) µi = λi + 1

which amounts to say that ` ∗(Ti) > `(T ) whenever ∆C(i) < 0. To enhance the population,
we suggest the following algorithm.

(0) Fix nv > 0, the maximum number of virtual individuals allowed to be inserted in the
population.

(1) Build R(e) for all e ∈ I.
(2) For all p ∈ R(e), compute the maximum likelihood partner i such that {(p, i) 7→ e}

is achieved.
(3) Among these candidates, add in P the individual maximizing ` ∗(Ti) provided

max
i

` ∗(Ti) > `(T ).

Set te − 1 as birth date of the new individual, where te is the one of e.
(4) Recalculate the most likely tree T and the set I according to the new population.
(5) Repeat steps (1)–(4) as long as the criterion increases and Card(P) < n+ nv.

Before going further, let us focus on the complexity of this algorithm (and on some possible
improvements). In the present state, it is fully exploratory and starts from arbitrary points.
In terms of complexity, it is possible to evaluate that step (4) has a number of crosses
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in the range of O(n(n − 1)(n − 2)) to be tested. Generally Card(I) is small, thus, even
if it entirely depends on the population, let us suppose that it is bounded by ni � n.
The construction of R(e) requires O(n − 1) crosses to be tested for a given e. On the
whole, we can roughly estimate that, considering a crossbreeding as the unit of measurement,
O(nv ni n(n−1)2(n−2)) operations are needed. In practice, much less operations are actually
done since the symmetry and the chronological and genetical constraints cut a lot of paths.
To reach a lower complexity, it should be relevant to look at less exploratory methods, in order
to deal with the increasing number of individuals. In addition, the maximum of likelihood
in step (2) is the natural solution, but it can also have unwelcome effects. In particular, this
algorithm can not generate any triploid. This follows from the fact that, whenever a triploid
produces a gamete, there exists a diploid or a tetraploid that produces the same gamete
with a probability two times bigger. In the same vein, the virtual tetraploids can either
be homozygous or heterozygous with only two distinct alleles. As a consequence, since the
individual is specifically created to fulfill a particular crossbreeding, the situations where the
missing link is a parent of more than one offspring in the population can not be recovered,
except if the offsprings are genetically similar. This could be improved by testing not only
the candidates, but also the mixes between them. For example, if {a, a, b, b} is added to
explain the presence of a diploid {a, b}, and if {c, c, d, d} is added to explain the presence of
another diploid {c, d}, then it could be interesting to add {a, b, c, d} to explain both of them,
instead. To conclude, we would like to highlight a last enhancement. Setting te − 1 as date
of birth of the new individual is an arbitrary choice because, focusing on the offspring, we
do not have any more information about the other interactions within the new genealogy.
Each birth date between some initial time t0 and te − 1 should be tested as well. All these
improvements are hardly conceivable due to the computational complexity, except for small
populations (n ≈ 50, as in our simulations). Hence, as we can see, there are still numerous
open questions to explore on the fundamental issue of the missing links.

4. An empirical study

The numerical processings were carried out through the R programming language and its
software environment. In particular, we used the package igraph1 to display the graphs. In
all figures of this section, the geometric shapes that we use are circles to represent diploids,
triangles for triploids and squares for tetraploids, gray individuals are real whereas white
individuals are virtual. Similarly, we use solid lines for true links as well as dotted lines for the
wrong links given by the model (unless noted otherwise). The computations are conducted
via the uniform probabilities π21 = π12 = 1

2
and π31 = π22 = π13 = π211 = π121 = π112 = 1

3
.

The estimation of the mean number of offsprings is given by (2.17) and the outlier threshold
is chosen to the standard q3 + 1.5 (q3 − q1) with q1 and q3 the first and third quartiles of a
subset of observations. It is computed using a moving window on the values in chronological
order and then extrapolated by a linear regression, to take into account the time-invariance
in the reproduction law and, thus, the fact that the older an individual is, the more offsprings
he is likely to have.

4.1. On a simulated population. Consider the simulated population P whose detailed
description is provided in the Appendix. To sum up, there are n = 54 individuals among

1https://cran.r-project.org/web/packages/igraph/igraph.pdf
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which 17 diploids, 17 triploids and 20 tetraploids have interacted throughout 8 generations.
The simulation relies on m = 4 genes, dates of birth are known (via the generations) as are
ploidies and observed genotypes. The goal is to apply our model on this population and to
put the results into perspective, compared with the true genealogy T 0 which is represented
on the left of Figure 5.

Figure 5. True genealogy T 0 of the simulated population, on the left. Su-
perposition of all genealogies of the simulated population found by the model,
on the right.

4.1.1. Family trees and most likely genealogy. All genealogies found by the model have been
superposed on the right of Figure 5, that is, the full content of G(e) given in (2.10) for each
e ∈ P . Similarly, we have also added in Figure 6 the genealogical graph of the population as
it is defined in (2.18), highlighting the pairwise potential relationships. We can first verify
that the ancestors (individuals from 1 to 10) are only parents. On the one hand, we observe
that the true genealogy is included in the graph, illustrating thereby the effectiveness of
the exploratory algorithm. One can also notice, on the other hand, that some wrong links
have been detected. We should however indicate that a wrong link is not an impossible
link, for the reader can check that dotted arcs correspond to compatible crosses. Consider
as an example the link {(14, 28) 7→ 38} appearing in Figure 5 but absent from the true
genealogy. We have x(14) = 3, so ĝ2(14) = {160, 170, 180} = g2(14). Similarly, with
x(28) = 4 and x(38) = 4, ĝ2(28) = {210, 290} can correspond to g2(28) = {210, 290, 290, 290}
and ĝ2(38) = {160, 170, 290} to g2(38) = {160, 170, 290, 290}. Through pattern (P5), a
genealogical link is possible on the signal 2 and we easily check that the same conclusion
holds on each signal. This is an illustration of the fact that, from a practical point of view
– namely, with an unknown true genealogy – it is preferable to produce a set of possible
genealogies instead of a single one. Afterwards, the accumulation of genes enables pruning
of the trees, step by step, to reinforce the remaining branches. To support this argument,
Figure 7 shows on its left the family tree T ∗ maximizing the log-likelihood (2.11) in which
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Figure 6. Genealogical graph of the simulated population, on the left. The
thickness of the links is proportional to their weights in the model. Mean
number of offsprings for each individual, on the right. The abscissa displays
the individuals i ∈ P in chronological order and the ordinate represents the
estimated expectation of N(i). The dotted line is the outlier threshold extrap-
olated from the crosses (the moving window goes through 22 observations).
There is 1 probably favored individual.

we observe that the true genealogy was not the most likely one, retrospectively. Let us
have a look at the differences. The first one is the selection of {(14, 28) 7→ 38} instead of
{(14, 29) 7→ 38}. Knowing that 28 and 29 both have parents (9, 15), we easily understand
their genetic likeness. The second one is interpreted in the same way since {(8, 30) 7→ 46}
stands in for {(8, 18) 7→ 46}, and since 18 is a parent of 30. For the last two ones, 13
takes the place of 11 in the true connections {(11, 12) 7→ 20} and {(11, 29) 7→ 40}, 11 and
13 having the same parents. To be precise, in the latter example each link leads to the
same probability and the maximum of likelihood is not unique (in which case the algorithm
chooses one solution at random). On this dataset, we get

`(T ∗) ≈ −3.052 > −7.616 ≈ `(T 0).

Even so, wrong links maximizing the log-likelihood are usually relevant. In this example,
the wrong parents detected are in fact close relatives of true parents. To sum up the results
of this simulation, amongst the 45 potential triplets that form the full genealogies, 34 are
true and 11 are wrong, but all true links are correctly retrieved. In the maximum likelihood
genealogy, one can find from 30 to 32 true links and from 2 to 4 wrong links. The two links
that can either be true or wrong have equal probabilities, as it has just been detailed. Even
if it is of lesser interest on a simulation, Figure 6 also contains the estimated expectations of
the number of offsprings in the population, on the basis of all genealogies with no threshold
(πmin = 0). The individual 42 appears as favored and, indeed, one can check that it has 4
offsprings in the true genealogy whereas it belongs to generation 5. In terms of mean error

between the estimated number of offsprings Ê[N(i)] and the number of offsprings n∗(i) in
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the maximum likelihood genealogy,

1

n

∑

i∈P

∣∣Ê[N(i)]− n∗(i)
∣∣ ≈ 8.52× 10−2 and

1

n

∑

i∈P

(
Ê[N(i)]− n∗(i)

)2 ≈ 5.19× 10−2.

Figure 7. Genealogy T ∗ maximizing the log-likelihood of the simulated pop-
ulation found by the model, on the left. There are 8 connected components.
Genealogy T1 maximizing the log-likelihood of the simulated population en-
hanced with one individual (55) found by the model, on the right. There are
5 connected components.

4.1.2. Missing links. We now look for missing links, following the algorithm described at
the end of Section 3 with nv = 3. Compared with the most likely tree T ∗ on the pop-
ulation P , the largest increase of our penalized criterion ` ∗ given by (2.19) is reached by
adding the tetraploid g1(55) = {200, 200, 200, 200}, g2(55) = {270, 270, 270, 270}, g3(55) =
{370, 370, 370, 370} and g4(55) = {410, 410, 520, 520}, respectively for the 4 genes, as a mem-
ber of generation 5. We obtain the genealogy on the right of Figure 7. From 8 connected
components in T ∗, only 5 remain in the maximum likelihood tree T1 on the population
enhanced with the individual 55 having this precise genotype. Thus its role as a missing
link is clearly highlighted and that explains the reason why it has been privileged, even if
`(T1) ≈ −3.106 has decreased compared to `(T ∗) ≈ −3.052. A second loop of the algorithm
generates the tetraploid having g1(56) = {10, 10, 200, 200}, g2(56) = {130, 130, 380, 380},
g3(56) = {210, 210, 370, 370} and g4(56) = {430, 520, 520, 520} on its 4 genes, in generation
3. Only 4 connected components remain, but the log-likelihood is now `(T2) ≈ −3.482.
The last loop of the algorithm gives a diploid g1(57) = {90, 90}, g2(57) = {220, 220},
g3(57) = {310, 310} and g4(57) = {510, 510} in generation 5. Only 3 connected compo-
nents remain while, for this last addition, the log-likelihood is unchanged. Figure 8 depicts
T2 and T3, respectively on the left and on the right. This simulated example seems to clearly
illustrate the operation of the exploratory algorithm, focusing on connected components to
build missing links, retrospectively. To support the remarks of Section 3 about the algorithm,
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suppose now that the diploid 49 is removed from the dataset. Then, amongst all virtual can-
didates, a new diploid – say 49∗ – with genotype {240, 240}, {320, 320}, {410, 410} and
{410, 410} appears in generation 6. One can check that this does not correspond to the real
49, but this new genotype allows the cross {(49∗, 50) 7→ 51} with a bigger probability than
what actually occurred (precisely, 1

2
× 1× 1

6
× 1

12
< 1

2
× 1× 1

6
× 1

6
). From this point of view,

the algorithm is consistent since there is no way we can retrieve the true allele 510 instead,
not spread elsewhere. However, if the diploid 1 is removed from the dataset, then, because it
is involved in numerous relationships and because it is heterozygous in most cases, a unique
individual playing the same roles is not recovered. For example, on signal 1 and 4, alleles
20 and 310 are needed for {(1, 2) 7→ 13} whereas 10 and 320 are needed for {(1, 2) 7→ 11}.
The algorithm suggests an individual {20, 20} and {310, 310} and another one {10, 10} and
{320, 320} on these signals, because they maximize the likelihood of the crossbreedings with
2 to produce 11 and 13. In the end, all genetic information is retrieved but, to be improved,
the process should also mix the candidates beforehand, considering {10, 20} and {310, 320}
in this case, as we have mentioned it in the enhancements.

Figure 8. Genealogy T2 maximizing the log-likelihood of the simulated pop-
ulation enhanced with two individuals (55 and 56) found by the model, on the
left. There are 4 connected components. Genealogy T3 maximizing the log-
likelihood of the simulated population enhanced with three individuals (55, 56
and 57) found by the model, on the right. There are 3 connected components.

4.2. On a rose bushes population. To conclude the study, we are now going to launch
our model on a subpopulation of rose bushes collected on the basis of m = 4 genes. We start
by giving some explanations about the experimental gathering of the data. Among molecular
markers, microsatellite markers are still a reference for pedigree reconstruction because they
are highly multiallelic codominant markers [9]. After Polymerase Chain Reaction (PCR),
amplified fragments are generally separated by capillary electrophoresis. According to their
size, amplified fragments are detected at a given time of the electrophoresis and are depicted
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as a peak in the electrophoregram, whose area varies according to the intensity of the sig-
nal. Thus, a statistical treatment of the four signals of the individual i gives the observed
genotypes ĝ(i). To deal with allelic multiplicity, theoretical ratios between peak intensities
could be used to determine the relative number of copies of each allele in polyploids [6].
Unfortunately this strategy is very difficult to apply, especially because signal intensity is
also dependent on amplification competition between alleles during PCR. Therefore, in most
cases electrophoregrams are generally interpreted as presence or absence of alleles [5]. This
is also our approach in this article but considering all possibilities of multiplicity, for which
we have seen in the previous sections how our model enables building and probabilizing of
g(i) from ĝ(i). An example of signal is shown in Figure 9. In addition we must not forget
that a calibration of the equipment is needed, for practical purposes. In concrete terms, the
abscissa of the signals is made of decimal values, which is clearly incompatible with what
it is supposed to highlight, namely some base pairs. Hence we take rounded values, and an
offset of ±1 for each allele has to be considered. This is the reason why we decided to switch
to criterion (2.5) in the real data analysis.

Figure 9. Example of signal for a particular microsatellite marker. The indi-
vidual i is tetraploid and two peaks have been detected. Here ĝ(i) is {132, 161}
and g(i) is {132, 132, 132, 161} with probability π31, {132, 132, 161, 161} with
probability π22 and {132, 161, 161, 161} with probability π13. To simplify,
scales are deliberately removed.

4.2.1. Family trees and most likely genealogy. Now we put aside n = 116 rose bushes, selected
for the knowledge of their ploidy and for the clarity of their signals, and we look for potential
genealogical links among them using the same allelic probabilities as in the simulation study.
All genealogies are superposed on Figure 10 together with the genealogical graph on Figure
11 for the threshold probability πmin = 0.2, a choice that will be justified in the sequel.
Even if the graphical representation seems unexploitable, it illustrates the fact that many
solutions are conceivable. More than one genealogy maximizes the likelihood, for some links
have the same probability. An example of most likely genealogy is given on the left of Figure
12, it contains 35 connected components. Within the largest one, a chain of 5 generations is
obtained (9→ 56→ 67→ 59→ 47).

4.2.2. Missing links. On the right of Figure 12, one of the most likely genealogies is repre-
sented when nv = 3 new individuals suggested by the algorithm of Section 3 are added (117,
118 and 119). Again, their role as missing links and their usefulness to connect separated
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Figure 10. Superposition of all genealogies of the rose bushes subpopulation
found by the model.

branches of the genealogy are clearly brought to light. Only 32 of them remain, due to
the fact that each missing link connects two components. In particular, we can notice the
important intercession of 118, plugging the two largest ones.

4.2.3. Selected individuals. To look for selected individuals, the estimated probabilities (2.15)
and expectations (2.17) are computed for all i ∈ P on the basis of a subset of genealogies
made of links whose likelihood is greater than πmin = 0.2. Indeed, since Card(G(P)) > 1028

the computation with no threshold is infeasible. It appears that with this choice of threshold,
Card(G(P)) is in the range of 106 which is small enough to proceed to computations and large
enough to trust the statistical estimations. Figure 13 contains the empirical expectations of
all individuals together with an outlier threshold, evaluated as it is explained in the beginning
of this section. Each individual having a higher mean number of offsprings is considered as a
potential target for the retrospective selection by breeders, there are 6 in this subpopulation.
Amongst all individuals, i = 88 has, on average, the largest number of offsprings in the
population. Figure 14 shows the empirical distribution of N(88). Concretely,

P̂(N(88) = 5) ≈ 0.770, P̂(N(88) = 6) ≈ 0.230 and Ê[N(88)] ≈ 5.230.

The last empirical distribution represented is the one of N(73), chosen to illustrate the fact
that an individual may have offspring in some genealogies and no offspring in the others.
Numerically,

P̂(N(73) = 0) ≈ 0.222, P̂(N(73) = 1) ≈ 0.444, P̂(N(73) = 2) ≈ 0.278,
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Figure 11. Genealogical graph of the rose bushes subpopulation. The thick-
ness of the links is proportional to their weights in the model. The dotted lines
correspond to potential links set to zero by the threshold probability.

P̂(N(73) = 3) ≈ 0.056 and Ê[N(73)] ≈ 1.167.

In terms of mean error between the estimated number of offsprings Ê[N(i)] and the number
of offsprings n∗(i) in the maximum likelihood genealogy,

1

n

∑

i∈P

∣∣Ê[N(i)]− n∗(i)
∣∣ ≈ 1.21× 10−1 and

1

n

∑

i∈P

(
Ê[N(i)]− n∗(i)

)2 ≈ 7.30× 10−2.

5. Conclusion

To conclude, we would like to draw the attention of the reader to some weaknesses of
the model, essentially relying on the allelic multiplicity. Indeed, our choice of considering
each potential multiplicity weighted by a probability, instead of selecting a particular one,
may lead to contradictions in the genealogy. Suppose for simplification that the most likely
genealogy contains the links {(p1, p2) 7→ q1} and {(q1, q2) 7→ e} where p1 is a tetraploid
such that g(p1) = {a, a, a, a}, and p2 is a diploid such that g(p2) = {b, b}. Both of them
are homozygous, so there is no allelic uncertainty derived from their observed genotypes,
but ĝ(q1) = {a, b} for the triploid q1 can only match with {(p1, p2) 7→ q1} in case of
g(q1) = {a, a, b}. Suppose now that q2 and e are tetraploids, having g(q2) = {c, c, c, c}
and ĝ(e) = {b, c}, respectively. Then, the link {(q1, q2) 7→ e} has a nonzero probability only
for g(q1) = {a, b, b}. In other words, the most likely genealogy treats q1 as a link between
(p1, p2) and e, but at the cost of incompatible allelic combinations. This is a trail for future
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Figure 12. Genealogy T ∗ maximizing the log-likelihood of the rose bushes
subpopulation found by the model (the dotted line highlights a chain of 5
generations), on the left. There are 35 connected components. Genealogy T3

maximizing the log-likelihood of the rose bushes subpopulation enhanced with
three individuals (117, 118 and 119) found by the model, on the right. There
are 32 connected components.

improvements of our model, in particular it seems worth considering an algorithm to detect
contradictions and to eliminate such trees from the set of genealogies. Another weakness is
the estimation of π21, π12, π31, . . ., namely the probabilities of allelic multiplicity. As we have
seen in Section 4.2, we lack information to properly evaluate them. An ambitious track could
be the generalization of [4], in which the authors establish the well-known Hardy-Weinberg
equilibrium to deal with heterozygoty in a diploid population. A challenging study will be to
characterize this equilibrium in our polyploid population – if it exists – and to determine its
degrees of freedom. This additional information will enable us to refine the probabilities of
multiplicity, considering that the population has reached its equilibrium. The crossbreeding
patterns also have to be enhanced with double reductions and preferential matches, both of
them easily treated on a theoretical point of view (dealing with double reductions as rare
events of probability 0 < ε � 1 and preferential matches as a lack of uniformity in the
gamete production, when computing the probability of the crossbreeding), but difficult to
estimate. We have widely discussed the algorithm for missing links and its status of working
base which calls for numerous enhancements. Finally, it is important to insist upon the
fact that this work is mainly theoretical and that the application of our model on a real
population of rose bushes is only relevant in order to show that coherent and interpretable
results are obtained. Nevertheless, we cannot draw any conclusion from an empirical study
relying on m = 4 genes. In-depth experiments will be conducted on more genes, and the
comparison of any interesting result with available historical sources will constitute strong
arguments to understand the breeders strategies over the past centuries, and also to try to
complete the datasets with some lost or missing information.

21

169



Figure 13. Mean number of offsprings for each individual. The abscissa dis-
plays the individuals i ∈ P in chronological order and the ordinate represents
the estimated expectation of N(i). The dotted line is the outlier threshold
extrapolated from the crosses (the moving window goes through 30 observa-
tions). For readability reasons, the abscissa is not completely filled. There are
6 probably favored individuals.

Figure 14. Empirical distribution of the random variable N(88), at the top.
The abscissa represents the number k of offsprings, the ordinate is the esti-
mated probability associated with the event {N(88) = k}. At the bottom,
empirical distribution of the random variable N(73).
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Appendix

This Appendix is devoted to the precise description of the simulated population appearing
in Section 4.1. All useful information are given in Tables 1, 2 and 3, displaying the compo-
sition of the successive generations. For each individual, the columns indicate an identifier
i, the ploidy x(i), the observed genotypes ĝ(i) on the four signals, the couple of parents and
the reproduction pattern.

Generation 1

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

1 2 10–20 110 210–310 310–320 ∅ –

2 2 30–40 130–140 220–230 330 ∅ –

3 2 50 150–160 240–250 340 ∅ –

4 3 60 170–180–190 260–270 350–360–370 ∅ –

5 3 70–80 200 280 380–390–400 ∅ –

6 3 90–100–110 210–220 290–300–310 410 ∅ –

7 4 120–130–140 230–240–250–260 320–330 420–430–440 ∅ –

8 4 150–160–170–180 270–280 340 450 ∅ –

9 4 190–200 290–300 350–360–370 460–470–480–490 ∅ –

10 4 210–220 310–320 380–390–400 500–510–520 ∅ –

Generation 2

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

11 2 10–40 110–130 210–220 320–330 (1, 2) (P1)

12 2 40–50 140–150 220–250 330–340 (2, 3) (P1)

13 2 20–40 110–130 210–220 310–330 (1, 2) (P1)

14 3 50–60 160–170–180 250–270 340–350–370 (3, 4) (P2)

15 3 40–100–110 140–210 220–290–310 330–410 (2, 6) (P2)

16 2 20–80 110–200 210–280 320–400 (1, 5) (P2)

17 3 50–210–220 150–320 240–380–400 340–520 (3, 10) (P3)

18 4 130–160–180 240–250–270 320–330–340 430–450 (7, 8) (P6)

Generation 3

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

19 2 20–60 110–180 270–280 350–400 (4, 16) (P2)

20 2 40 110–150 220 330 (11, 12) (P1)

21 4 130–180–200 270–290–300 340–350–370 450–480–490 (9, 18) (P6)

22 3 60–210 180–320 250–390–400 370–520 (10, 14) (P5)

23 3 90–130–140 220–230–240 300–320 410–420–440 (6, 7) (P5)

24 3 10–130–160 130–270 210–330–340 330–430–450 (11, 18) (P3)

25 4 190–200 290–300 350–360–370 410–520 ∅ –

26 4 130–160–180 240–250–270 320–330–340 410 ∅ –

Table 1. Full description of generations 1, 2 and 3 in the simulated population.
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Generation 4

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

27 4 80–200 200–270–300 280–340 380–400–480–490 (5, 21) (P5)

28 4 40–100–200 210–290 220–310–350–360 330–410–470–490 (9, 15) (P5)

29 3 100–200 140–290 310–350–370 410–460–490 (9, 15) (P5)

30 4 130–200 270 330–340–350 450 (18, 21) (P6)

31 2 20–210 180–320 280–380 400–520 (17, 19) (P2)

32 2 40–60 110 220–270 330–350 (19, 20) (P1)

33 4 10–180–200 130–270–380 210–340–370 430–450–520 ∅ –

34 4 20–90–200 160–270–330 370 520–530–550 ∅ –

35 4 130–180–200 270–290–300 340–350–370 410 (25, 26) (P6)

Generation 5

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

36 2 60–100 180–290 270–370 340–490 (14, 29) (P4)

37 3 50–200 140–160–180 250–270–370 350–370–410 (14, 29) (P4)

38 4 50–60–100 160–170–290 270–310–350 340–370–410–490 (14, 29) (P4)

39 2 20–210 110–150 210–380 320–340 (1, 17) (P2)

40 3 40–200 130–290 210–310–370 330–410–460 (11, 29) (P2)

41 2 20–110 150–320 260 410–520 ∅ –

42 3 230 170–390–420 240–340 380–390 ∅ –

43 4 70–90–100 210–220–270 310–330–340–400 490 ∅ –

Table 2. Full description of generations 4 and 5 in the simulated population.

Generation 6

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

44 3 110–230 170–320–390 240–260–340 390–520 (41, 42) (P2)

45 2 110–230 320–420 260–340 390–520 (41, 42) (P2)

46 4 130–150–160 270 330–340 450 (8, 18) (P6)

47 2 90 220 310–320 410–510 ∅ –

48 3 50–210 180–320 250–400 410–520 (22, 37) (P4)

49 2 240 320 410 510–520 ∅ –

50 4 100–200 270 310–330–370 410–490–520 ∅ –

Generation 7

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

51 3 200–240 270–320 310–370–410 410–490–520 (49, 50) (P3)

52 4 230 170–390–420 240–340 390 (42, 44) (P4)

53 3 130 230–240 320 410–420–440 (7, 23) (P5)

Generation 8

i x(i) ĝ1(i) ĝ2(i) ĝ3(i) ĝ4(i) Par. Pat.

54 4 230 170–390–420 240–340 390 (42, 52) (P5)

Table 3. Full description of generations 6, 7 and 8 in the simulated population.

References

[1] Ackerman, M. W., Hand, B. K., Waples, R. K., Luikart, G., Waples, R. S., Steele, C. A.,
Garner, B. A., McCane, J., and Campbell, M. R. Effective number of breeders from sibship
reconstruction: empirical evaluations using hatchery steelhead. Evolutionary applications 10, 2 (2017),
146–160.

[2] Barker, M. S., Arrigo, N., Baniaga, A. E., Li, Z., and Levin, D. A. On the relative abundance
of autopolyploids and allopolyploids. New Phytologist 210, 2 (2016), 391–398. 2015-19414.

[3] Bourke, P. M., Arens, P., Voorrips, R. E., Esselink, G. D., Koning-Boucoiran, C. F. S.,
van’t Westende, W. P. C., Santos Leonardo, T., Wissink, P., Zheng, C., van Geest, G.,

24

172



Visser, R. G. F., Krens, F. A., Smulders, M. J. M., and Maliepaard, C. Partial preferential
chromosome pairing is genotype dependent in tetraploid rose. The Plant Journal 90, 2 (2017), 330–343.
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