Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

LiDAR-only based navigation algorithm for an autonomous agricultural robot

Abstract : The purpose of the work presented in this paper is to develop a general and robust approach for autonomous robot navigation inside a crop using LiDAR (Light Detection And Ranging) data. To be as robust as possible, the robot navigation must not need any prior information about the crop (such as the size and width of the rows). The developed approach is based on line extractions from 2D point clouds using a PEARL based method. In this paper, additional filters and refinements of the PEARL algorithm are presented in the context of crop detection. A penalization of outliers, a model elimination step, a new model search and a geometric constraint are proposed to improve the crop detection. The approach has been tested over a simulator and compared with classical PEARL and RANSAC based approaches. It appears that adding those modification improved the crop detection and thus the robot navigation. Those results are presented and discussed in this paper. It can be noticed that even if this paper presents simulated results (to ease the comparison with other algorithms), the approach also has been successfully tested using an actual Oz weeding robot, developed by the French company Naio Technologies.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.univ-angers.fr/hal-02527950
Contributeur : Okina Université d'Angers <>
Soumis le : dimanche 17 mai 2020 - 13:58:58
Dernière modification le : lundi 18 mai 2020 - 09:27:44

Fichier

LiDAR-Only Based Navigation Al...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Flavio Malavazi, Rémy Guyonneau, Jean-Baptiste Fasquel, Sébastien Lagrange, Franck Mercier. LiDAR-only based navigation algorithm for an autonomous agricultural robot. Computers and Electronics in Agriculture, Elsevier, 2018, 154, pp.71 - 79. ⟨10.1016/j.compag.2018.08.034⟩. ⟨hal-02527950⟩

Partager

Métriques

Consultations de la notice

47

Téléchargements de fichiers

179