![]() |
Le théorème de Rees-Shishikura joue un rôle important dans l’étude des accouplements de polynômes. Il permet d’obtenir une semi-conjugaison à partir d’une équivalence combinatoire de Thurston. Dans ce travail, nous reformulons et redémontrons ce théorème dans un cadre plus général. Cette nouvelle version du théorème est applicable à une classe plus large de revêtements ramifiés posteritiquement finis. Nous en fournissons un exemple à la fin de notre article.