Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Hardy spaces for the Laplacian with lower order perturbations

Abstract :

We consider Hardy spaces of functions harmonic on smooth domains in Euclidean spaces of dimension greater than two with respect to the Laplacian perturbed by lower order terms. We deal with the gradient and Schrödinger perturbations under appropriate Kato conditions. In this context we show the usual correspondence between the harmonic Hardy spaces and the Lp spaces (or the space of finite measures if p=1) on the boundary. To this end we prove the uniform comparability of the respective harmonic measures for a class of approximating domains and the relative Fatou theorem for harmonic functions of the perturbed operator.

Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03040244
Contributeur : Okina Université d'Angers <>
Soumis le : vendredi 4 décembre 2020 - 11:25:50
Dernière modification le : mardi 1 juin 2021 - 21:00:04

Identifiants

Collections

Citation

Tomasz Luks. Hardy spaces for the Laplacian with lower order perturbations. Studia Mathematica, Instytut Matematyczny - Polska Akademii Nauk, 2011, 204 (1), pp.39 - 62. ⟨10.4064/sm204-1-3⟩. ⟨hal-03040244⟩

Partager

Métriques

Consultations de la notice

17